Natural giant extracellular hemoglobins (Hbs) from polychaete annelids are currently actively investigated as promising oxygen carriers. Their powerful oxygenating ability and their safety have been demonstrated in preclinical studies, motivating their development for therapeutic and industrial applications. HEMARINA-M101 (M101) is derived from the marine invertebrate Arenicola marina.
View Article and Find Full Text PDFBackground: RET/PTC1 is the most prevalent type of gene rearrangement found in papillary thyroid carcinoma (PTC). Previously, we introduced a new noncationic nanosystem for targeted RET/PTC1 silencing by efficient delivery of small interfering RNA (siRNA) using the "squalenoylation" approach. With the aim of improving these results further, we designed new squalenoyl nanostructures consisting of the fusogenic peptide GALA-cholesterol (GALA-Chol) and squalene (SQ) nanoparticles (NPs) of siRNA RET/PTC1.
View Article and Find Full Text PDFExpert Rev Clin Pharmacol
July 2012
RNAi is a powerful gene silencing process that holds great promise in cancer therapy by the use of siRNA. The aim of this review is to give an outline on different approaches to deliver siRNA and to describe the advantages and disadvantages of these systems. The prospects for siRNA are to be substantially better than other therapies, as they are easily applicable to any therapeutic target.
View Article and Find Full Text PDFOligonucleotides, including antisense oligonucleotides and siRNA, are promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical in view of their clinical application. Therefore, cation-based nanoplexes have been developed to improve the stability as well as the intracellular penetration of these short fragments of nucleic acids.
View Article and Find Full Text PDFWe report the conjugation of the natural lipid squalene (SQ) with a small interfering RNA (siRNA), against the junction oncogene RET/PTC1, usually found in papillary thyroid carcinoma (PTC). The acyclic isoprenoid chain of squalene has been covalently coupled with siRNA RET/PTC1 at the 3'-terminus of the sense strand via maleimide-sulfhydryl chemistry. Remarkably, the linkage of siRNA RET/PTC1 to squalene led to an amphiphilic molecule that self-organized in H(2)O as siRNA-SQ RET/PTC1 nanoparticles (NPs).
View Article and Find Full Text PDF