Increased renal expression of periostin, a protein normally involved in embryonic and dental development, correlates with the decline of renal function in experimental models and patient biopsies. Because periostin has been reported to induce cell differentiation, we investigated whether it is also involved in the development of renal disease and whether blocking its abnormal expression improves renal function and/or structure. After unilateral ureteral obstruction in wild-type mice, we observed a progressive increase in the expression and synthesis of periostin in the obstructed kidney that associated with the progression of renal lesions.
View Article and Find Full Text PDFProgression of chronic kidney disease (CKD) is a major health issue due to persistent accumulation of extracellular matrix in the injured kidney. However, our current understanding of fibrosis is limited, therapeutic options are lacking, and progressive degradation of renal function prevails in CKD patients. Uncovering novel therapeutic targets is therefore necessary.
View Article and Find Full Text PDFThe interactions between tubulointerstitial infiltrating cells and the extracellular matrix play an important role in regulating renal fibrosis. Discoidin domain receptor 1 (DDR1) is a nonintegrin tyrosine kinase receptor for collagen implicated in cell adhesion, proliferation, and extracellular matrix remodeling. We have previously demonstrated that transgenic mice lacking DDR1 are protected from hypertension-associated renal fibrosis.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2011
Chronic kidney disease is promoted by a variety of factors that induce chronic inflammation and fibrosis. Inflammation and excessive scaring have been recently associated with disruptions of the gap junction-mediated intercellular communication. Nevertheless, little is known about alterations of the expression of gap junction proteins such as connexin (Cx) 43 and 37 in chronic renal disease.
View Article and Find Full Text PDF