R I Med J (2013)
November 2024
The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner.
View Article and Find Full Text PDFInfluenza is a global health issue causing substantial health and economic burdens on affected populations. Routine, annual vaccination for influenza virus is recommended for all persons older than 6 months of age. The propagation of the influenza virus for vaccine production is predominantly through embryonated chicken eggs.
View Article and Find Full Text PDFAntisense oligonucleotide-mediated (AO-mediated) therapy is a promising strategy to treat several neurological diseases, including spinal muscular atrophy (SMA). However, limited delivery to the CNS with AOs administered intravenously or subcutaneously is a major challenge. Here, we demonstrate a single subcutaneous administration of cell-penetrating peptide DG9 conjugated to an AO called phosphorodiamidate morpholino oligomer (PMO) reached the CNS and significantly prolonged the median survival compared with unconjugated PMO and R6G-PMO in a severe SMA mouse model.
View Article and Find Full Text PDFMolecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is primarily caused by out-of-frame deletions in the dystrophin gene. Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) converts out-of-frame to in-frame mutations, producing partially functional dystrophin. Four single-exon skipping PMOs are approved for DMD but treat only 8 to 14% of patients each, and some exhibit poor efficacy.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. Recently approved SMA therapies have transformed a deadly disease into a survivable one, but these compounds show a wide spectrum of clinical response and effective rescue only in the early stages of the disease. Therefore, safe, symptomatic-suitable, non-invasive treatments with high clinical impact across different phenotypes are urgently needed.
View Article and Find Full Text PDFCleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7, and H10 in mice.
View Article and Find Full Text PDFPulmonary diseases offer many targets for oligonucleotide therapeutics. However, effective delivery of oligonucleotides to the lung is challenging. For example, splicing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect a significant cohort of Cystic Fibrosis (CF) patients.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) has been reported to use CX3CR1 as a receptor on cultured primary human airway epithelial cultures. To evaluate CX3CR1 as the receptor for RSV , we used the cotton rat animal model because of its high permissiveness for RSV infection. Sequencing the cotton rat CX3CR1 gene revealed 91% amino acid similarity to human CX3CR1.
View Article and Find Full Text PDFAntisense oligonucleotide (AO)-mediated exon-skipping therapies show promise in Duchenne muscular dystrophy (DMD), a devastating muscular disease caused by frame-disrupting mutations in the DMD gene. However, insufficient systemic delivery remains a hurdle to clinical deployment. Here, we demonstrate that MOTS-c, a mitochondria-derived bioactive peptide, with an intrinsic muscle-targeting property, augmented glycolytic flux and energy production capacity of dystrophic muscles in vitro and in vivo, resulting in enhanced phosphorodiamidate morpholino oligomer (PMO) uptake and activity in mdx mice.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2021
Background: As the causative agent of COVID-19, SARS-CoV-2 is a pathogen of immense importance to global public health. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense compounds composed of a phosphorodiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide.
View Article and Find Full Text PDFBackground: SARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide.
View Article and Find Full Text PDFThe novel emerged SARS-CoV-2 has rapidly spread around the world causing acute infection of the respiratory tract (COVID-19) that can result in severe disease and lethality. For SARS-CoV-2 to enter cells, its surface glycoprotein spike (S) must be cleaved at two different sites by host cell proteases, which therefore represent potential drug targets. In the present study, we show that S can be cleaved by the proprotein convertase furin at the S1/S2 site and the transmembrane serine protease 2 (TMPRSS2) at the S2' site.
View Article and Find Full Text PDFShared decision making honors patient autonomy and improves patient comprehension and therefore should be a part of every clinical decision a patient makes. Use of shared decision making in research informed consent conversations is more complicated due to diverse and potentially divergent investigator and patient interests, along with the presence of clinical equipoise. This article clarifies these different interests and discusses ways in which shared decision making can be applied in research.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF