Publications by authors named "Moulian N"

Most thymocytes are deleted by thymic selection. The mechanisms of cell death are far from being clear. Peroxynitrite is a powerful oxidant produced in vivo by the reaction of superoxide (O2*-) with nitric oxide (NO*) and is able to mediate apoptosis.

View Article and Find Full Text PDF

Three distinct dendritic cell (DC) subsets capable of stimulating allogeneic naive T cells were isolated from human thymus. The most abundant subset was represented by plasmacytoid DCs (pDCs), which secreted high amounts of IFN-alpha upon stimulation with inactivated influenza virus and thus likely correspond to the recently identified peripheral blood natural IFN-alpha/beta-producing cells (IPCs). Like those latter cells, thymic pDCs had distinctive phenotypic features (i.

View Article and Find Full Text PDF

This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation.

View Article and Find Full Text PDF

Fas, a cell surface receptor, can induce apoptosis after cross-linking with its ligand. We report that Fas antigen is constitutively expressed in medullary epithelial cells of the human thymus. Expression is decreased in cultured thymic epithelial cells (TEC), similarly to HLA-DR antigen.

View Article and Find Full Text PDF

Fas is a relative of the tumor necrosis factor receptor super-family. The receptors of this family play an important role in decisions of survival and cell death by apoptosis. It has become clear that Fas has multiple roles in the regulation of the immune response.

View Article and Find Full Text PDF

Fas, a cell surface receptor, can induce apoptosis after cross-linking with its ligand. Fewer than 3% of human thymocytes strongly express Fas. We report that Fas antigen expression can be upregulated by two signaling pathways in vitro, one mediated by anti-CD3 and the other by interleukin-7 + interferon-gamma.

View Article and Find Full Text PDF

Recent reports proposed that nitric oxide was a modulator of cholinergic transmission. Here, we examined the role of NO on cholinergic metabolism in a model of the peripheral cholinergic nervous synapse: synaptosomes from Torpedo electric organ. The presence of NO synthase was immunodetected in the cell bodies, in the nerve ending area of nerve-electroplate tissue and in the electroplates.

View Article and Find Full Text PDF

We analyzed cellular content of thymic samples from 26 human healthy donors, ranging from 1 week postnatal to 49 years old. Our results showed that there was an overall decrease in cellular density, beginning early during life, but with two peaks of cellular density, at 9 months and 10 years of age. Histological and immunohistological analyses showed that variations in cellular density were correlated with the morphological changes observed during thymic involution, namely the enlargement of interlobular trabeculae and the development of adipocytic tissue.

View Article and Find Full Text PDF

In the granule exocytosis pathway of cell-mediated cytotoxicity, rapid apoptotic nuclear damage in target cells has been unequivocally linked to granzyme B activity. Direct cleavage and activation of caspase-3 and related proteases by granzyme B have been identified as a central event in apoptosis induction by cytotoxic granules. The Bcl-2 oncoprotein has been recently shown to act at the level or upstream of caspase-3 family activation to inhibit apoptosis induced by various stimuli including Fas ligation, an alternative cell-mediated lytic pathway.

View Article and Find Full Text PDF

Myasthenia gravis (MG) is a human autoimmune disease mediated by anti-acetylcholine receptor (AChR) antibodies. The thymus is probably the site where the autoimmune response is triggered and maintained. Recent reports have linked various autoimmune disease with defective Fas expression.

View Article and Find Full Text PDF

The effect of cyclosporin A was investigated on Torpedo synaptosomes. Cyclosporin A inhibits KCl-evoked acetylcholine release (up to 50% at 1 mu M) and was inactive on acetylcholine release induced by a Ca2+ ionophore, A23187. Interestingly, when the synaptosomes were pretreated with cyclosporin A, this immunosuppressor did abolish the modulation of A23187-induced acetylcholine release produced by two other drugs, cetiedil (alpha-cyclohexyl-3-thienyl acetic acid 2-(hexahydro-1H-azepin-1-yl) ethyl ester, citrate salt) and MR16728 (N-(N'-hexamethylene imino)-propyl-phenyl-cyclohexyl-methyl acetamide, chlorhydrate), which were previously shown to be inhibitory and stimulatory, respectively.

View Article and Find Full Text PDF

The effects of cetiedil and its analogue MR 16728 were examined on spontaneous acetylcholine release measured with a chemiluminescent assay using choline oxidase in a synaptosomal suspension obtained from Torpedo marmorata electric organ. Evoked acetylcholine release is inhibited by cetiedil, whereas this drug enhances spontaneous extracellular Ca(2+)-independent acetylcholine release (up to 340%). This effect was examined as a function of cetiedil concentration and incubation time.

View Article and Find Full Text PDF

Ciguatoxin (CTX) (0.1 pM to 10 nM) added to a suspension of Torpedo synaptosomes incubated in Ca(2+)-free medium caused no detectable acetylcholine (ACh) release. However, subsequent addition of Ca2+ caused a large ACh release that depended on time of exposure, dose of CTX and on [Ca2+].

View Article and Find Full Text PDF

The presence of P-type calcium channels in synaptosomes prepared from electric organ of Torpedo marmorata was investigated by using the venom of Agelenopsis aperta, a toxin purified from it, FTX, and its synthetic analog. We analysed the action of these agents on acetylcholine release which was continuously followed using a chemiluminescent assay. Agelenopsis aperta venom, FTX and synthetic FTX inhibit acetylcholine release from synaptosomes induced by a presynaptic membrane depolarization with 60 mM KCl.

View Article and Find Full Text PDF

MR16728, a cetiedil analogue, enhanced acetylcholine (ACh) release (up to 145% of control) from Torpedo synaptosomes when the release was triggered by a Ca2+ ionophore, A23187 or ionomycin, in the presence of 4 mM Ca2+ in the release medium, but inhibited ACh release induced by KCl depolarization of the presynaptic membrane. MR16728 also inhibited Ca(2+)-ATPase activity measured in purified synaptosomal presynaptic membranes. We studied the stimulation by MR16728 as a function of its concentration; the half-maximal effect was reached at the concentration of 13.

View Article and Find Full Text PDF