Publications by authors named "Mouhong Lin"

Machines found in nature and human-made machines share common components, such as an engine, and an output element, such as a rotor, linked by a clutch. This clutch, as seen in biological structures such as dynein, myosin or bacterial flagellar motors, allows for temporary disengagement of the moving parts from the running engine. However, such sophistication is still challenging to achieve in artificial nanomachines.

View Article and Find Full Text PDF

Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice.

View Article and Find Full Text PDF

Despite remarkable facileness and potential in forming a wide variety of heterostructured nanoparticles with extraordinary compositional and structural complexity, one-pot synthesis of multicomponent heterostructures is largely limited by the lack of fundamental mechanistic understanding, designing principles, and well-established, generally applicable chemical methods. Herein, we developed a one-pot heterointerfacial metamorphosis (1HIM) method that allows heterointerfaces inside a particle to undergo multiple equilibrium stages to form a variety of highly crystalline heterostructured nanoparticles at a relatively low temperature (<100 °C). As proof-of-concept experiments, it was shown that widely different single-crystalline semiconductor-metal anisotropic nanoparticles with synergistic chemical, spectroscopic, and band-gap-engineering properties, including a series of metal-semiconductor nanoframes with high structural and compositional tunability, can be formed by using the 1HIM approach.

View Article and Find Full Text PDF

One of the most heavily used methods in chemical and biological labeling, detection, and imaging is based on silver shell-based enhancement on Au nanoparticles (AuNPs) that is useful for amplifying Rayleigh scattering, colorimetric signal, surface-enhanced Raman scattering, and electrical signal, but poor structural controllability and nonspecific growth of silver shells have limited its applications, especially with respect to signal reproducibility and quantification. Here, a highly specific, well-defined Cu nanopolyhedral shell overgrowth chemistry is developed with the aid of polyethyleneimine (PEI) on AuNPs, and the use of this PEI-mediated Cu polyhedral nanoshell (CuP) chemistry is shown as a means of light-scattering signal enhancement for the development of naked-eye-based highly sensitive and quantitative detections of DNA and viruses. Remarkably, these CuPs are exclusively formed on AuNPs in a controllable manner, with no noticeable nonspecific CuP growth.

View Article and Find Full Text PDF

Multicomponent nanoparticles that incorporate multiple nanocrystal domains into a single particle represent an important class of material with highly tailorable structures and properties. The controlled synthesis of multicomponent NPs with 3 or more components in the desired structure, particularly anisotropic structure, and property is, however, challenging. Here, we developed a polymer and galvanic replacement reaction-based transformative heterointerface evolution (THE) method to form and tune gold-copper-silver multimetallic anisotropic nanoparticles (MAPs) with well-defined configurations, including structural order, particle and junction geometry, giving rise to extraordinarily high tunability in the structural design, synthesis and optical property of trimetallic plasmonic nanoantenna structures.

View Article and Find Full Text PDF

Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na).

View Article and Find Full Text PDF

An electrochemical, signal amplified immunosensor was developed to detect 3-bromobiphenyl (BBP) by using a bio-inspired polydopamine (PDOP)/gold nanocluster (AuNc) as the sensor platform and multienzyme-labeled carbon hollow nanochains as the signal amplifier. The self-polymerized dopamine membrane on the AuNc-modified indium tin oxide (ITO) electrode were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle and electrochemical measurements. Such PDOP/AuNc platform featured the mild cross-linking reaction with the dense immobilization of BBP-antigens (BBP-Ag).

View Article and Find Full Text PDF

Multiwalled carbon nanotubes (MWCNT) were homogeneously covered with a bio-functional polydopamine (PDOP) by a simple dip-coating approach in mild basic solution. Then, uniformly dispersed and highly loaded platinum nanoparticles (PtNPs) were deposited on MWCNT@PDOP by a mild reductant, and were characterized by transmission electron microscopy and x-ray photoelectron spectroscopy. Afterwards, this nanocomposite was modified on the glass carbon electrode and applied to simultaneously determine dopamine (DA) and uric acid (UA) by differential pulse voltammetry (DPV).

View Article and Find Full Text PDF

An electrochemical immunosensor, basing on a dual amplification strategy by employing a biocompatible Fe(3)O(4)/polyaniline/Nafion (Fe(3)O(4)/PANI/Nafion) layer as sensor platform and multi-enzyme-antibody functionalized highly-carbonized spheres (multi-HRP-HCS-Ab(2)) as label, was constructed for sensitive detection of benzo[a]pyrene (BaP). The stable film, Fe(3)O(4)/PANI/Nafion, can not only immobilize biomolecules, but also catalyze the reduction of hydrogen peroxide, indicating an accelerated electron transfer pathway of the platform. The experimental conditions, including the concentration of Nafion, concentration of Fe(3)O(4)/polyaniline (Fe(3)O(4)/PANI), pH of the detection solution and concentrations of biomolecules, were studied in detail.

View Article and Find Full Text PDF

A novel electrochemical immunosensor for sensitive detection of benzo[a]pyrene (BaP) is constructed using poly(amido amine) (PAMAM) dendrimer and functionalized methylene blue/SiO2 core-shell nanoparticle (MB/SiO2) loaded with horseradish peroxidase (HRP) and HRP-secondary antibody (HRP-Ab2). Greatly enhanced sensitivity for BaP analysis is based on a dual signal amplification strategy. Firstly, the gold electrode (GE) was amino-functioned by electropolymerization of a novel compound, 2-amino-5,2':5'2''-terthiophene, followed by the modification of G 2.

View Article and Find Full Text PDF