Gold nanoparticles (AuNPs) exhibit unique size-dependent physiochemical properties that make them attractive for a wide range of applications. However, the large-scale availability of precision AuNPs has been minimal. Not only must the required nanoparticles be of precise size and morphology, but they must also be of exceedingly narrow size distribution to yield accurate and reliable performance.
View Article and Find Full Text PDFUnderstanding the uptake and transport dynamics of engineered nanomaterials (ENMs) by mammalian cells is an important step in designing next-generation drug delivery systems. However, to track these materials and their cellular interactions, current studies often depend on surface-bound fluorescent labels, which have the potential to alter native cellular recognition events. As a result, there is still a need to develop methods capable of monitoring ENM-cell interactions independent of surface modification.
View Article and Find Full Text PDFUnlabelled: Increased reliance on kill based approaches for disinfection raises concerns of antimicrobial resistance development and has significantly elevated the need for alternate approaches for skin and substrate disinfection. This study focuses on reducing harmful microbes from substrates primarily via removal and to a lesser extent by kill.
Hypothesis: Functional micro-particles designed to adhere to microbes, with a force greater than the force of microbial adhesion to the substrate, would result in enhanced removal-based disinfection of substrates when subject to an external force.
Due to the unique physicochemical properties exhibited by materials with nanoscale dimensions, there is currently a continuous increase in the number of engineered nanomaterials (ENMs) used in consumer goods. However, several reports associate ENM exposure to negative health outcomes such as cardiovascular diseases. Therefore, understanding the pathological consequences of ENM exposure represents an important challenge, requiring model systems that can provide mechanistic insights across different levels of ENM-based toxicity.
View Article and Find Full Text PDFPristine titanium dioxide (TiO) absorbs ultraviolet light and reflects the entire visible spectrum. This optical response of TiO has found widespread application as white pigments in paper, paints, pharmaceuticals, foods and plastic industries; and as a UV absorber in cosmetics and photocatalysis. However, pristine TiO is considered to be inert under visible light for these applications.
View Article and Find Full Text PDFLung cancer, primarily non-small cell lung cancer (NSCLC), is the leading cause of cancer mortality and the prognosis of patients with advanced or metastatic NSCLC is poor. Despite significant advances in diagnosis and treatment, little improvement has been seen in NSCLC mortality. Recently, Intratumoral Chemotherapy, a direct local delivery of chemotherapeutic drugs, has shown promise in clinical studies.
View Article and Find Full Text PDFA facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion.
View Article and Find Full Text PDFMicroRNAs (miRs) are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers.
View Article and Find Full Text PDFClinical applications of the indocyanine green (ICG) dye, the only near infrared (NIR) imaging dye approved by the Food and Drug Administration (FDA) in the USA, are limited due to rapid protein binding, fast clearance, and instability in physiologically relevant conditions. Encapsulating ICG in silica particles can enhance its photostability, minimize photobleaching, increase the signal-to-noise (S/N) ratio and enable in vivo studies. Furthermore, a combined magnetic resonance (MR) and NIR imaging particulate can integrate the advantage of high-resolution 3D anatomical imaging with high-sensitivity deep-tissue in-vivo fluorescent imaging.
View Article and Find Full Text PDFInt J Nanomedicine
December 2012
Background: Theranostic nanomaterials composed of fluorescent and photothermal agents can both image and provide a method of disease treatment in clinical oncology. For in vivo use, the near-infrared (NIR) window has been the focus of the majority of studies, because of greater light penetration due to lower absorption and scatter of biological components. Therefore, having both fluorescent and photothermal agents with optical properties in the NIR provides the best chance of improved theranostic capabilities utilizing nanotechnology.
View Article and Find Full Text PDFAdsorption of natural organic matter (NOM) on nanoparticles can have dramatic impacts on particle dispersion resulting in altered fate and transport as well as bioavailability and toxicity. In this study, the adsorption of Suwannee River humic acid (SRHA) on silver nanoparticles (nano-Ag) was determined and showed a Langmuir adsorption at pH 7 with an adsorption maximum of 28.6 mg g(-1) nano-Ag.
View Article and Find Full Text PDFPurpose: Photothermal therapy is an emerging cancer treatment paradigm which involves highly localized heating and killing of tumor cells, due to the presence of nanomaterials that can strongly absorb near-infrared (NIR) light. In addition to having deep penetration depths in tissue, NIR light is innocuous to normal cells. Little is known currently about the fate of nanomaterials post photothermal ablation and the implications thereof.
View Article and Find Full Text PDFWe report water-in-oil (W/O) microemulsion synthesis of fluorescently bright and paramagnetically strong bimodal chitosan nanoparticles (BCNPs). The W/O microemulsion system provides a confined environment for producing monodispersed BCNPs. Average particle size as estimated by the Transmission Electron Microscopy was 28 nm.
View Article and Find Full Text PDFThe dependence of the capillary adhesion force F(cap) between a silica microsphere and a flat silica surface versus a time period t of the samples' contact (i.e., dwell-in time) is experimentally investigated using atomic force microscopy (AFM).
View Article and Find Full Text PDFObjective: Accurate cell death discrimination is a time consuming and expensive process that can only be performed in biological laboratories. Nevertheless, it is very useful and arises in many biological and medical applications.
Methods And Material: Raman spectra are collected for 84 samples of A549 cell line (human lung cancer epithelia cells) that has been exposed to toxins to simulate the necrotic and apoptotic death.
Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols), have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia.
View Article and Find Full Text PDFApproaches for breast cancer treatment are invasive, disfiguring, have significant side-effects, and are not always curative. Nanotechnology is an emerging area which is focused on engineering of materials <100 × 10(-9) m. There is significant promise for advancing nanotechnology to improve breast cancer diagnosis and treatment including non-invasive therapy, monitoring response to therapy, advanced imaging, treatment of metastatic disease, and improved nodal staging.
View Article and Find Full Text PDFUnlabelled: Optical imaging is a cornerstone of modern oncologic research. The aim of this study is to determine the value of a new tool to enhance bioluminescent and fluorescent sensitivity for facilitating very-low-level signal detection in vivo.
Experimental: For bioluminescent imaging experiments, a luciferase expressing breast cancer cell line with metastatic phenotype was implanted orthotopically into the mammary fat pad of mice.
Nanoparticle-based contrast agents are quickly becoming valuable and potentially transformative tools for enhancing medical diagnostics for a wide range of in-vivo imaging modalities. Compared with conventional molecular-scale contrast agents, nanoparticles (NPs) promise improved abilities for in-vivo detection and potentially enhanced targeting efficiencies through longer engineered circulation times, designed clearance pathways, and multimeric binding capacities. However, NP contrast agents are not without issues.
View Article and Find Full Text PDFCopper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor-ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Å pores of silica.
View Article and Find Full Text PDFRationale: Nontuberculous mycobacterial (NTM) infection is a growing problem in the United States and remains underrecognized in the developing world. The management of NTM infections is further complicated by several factors, including the need to use high systemic doses of toxic agents, the length of therapy, and the development of drug resistance.
Objectives: We have evaluated the use of monocyte-derived dendritic cells (DCs) as a delivery vehicle for a luminescent derivative of amikacin prepared by conjugation to fluorescein isothiocyanate (FITC) (amikacin-FITC) into granulomas formed in the tissues of mice infected with Mycobacterium avium.
Self-assembled surfactant structures at the solid/liquid interface have been shown to act as nanoparticulate dispersants and are capable of providing a highly effective, self-healing boundary lubrication layer in aqueous environments. However, in some cases in particular, chemical mechanical planarization (CMP) applications the lubrication imparted by self-assembled surfactant dispersants can be too strong, resulting in undesirably low levels of wear or friction disabling material removal. In the present investigation, the influence of calcium cation (Ca(2+)) addition on dodecyl trimethylammonium bromide (C(12)TAB) mediated lubrication of silica surfaces is examined via normal and lateral atomic force microscopy (AFM/LFM), benchtop polishing experiments and surface adsorption characterization methods.
View Article and Find Full Text PDFIrradiating single-walled carbon nanotubes can lead to heat generation or ignition. These processes could be used in medical and industrial applications, but the poor solvent compatibility and high aspect ratios of nanotubes have led to concerns about safety. Here, we show that certain functionalized fullerenes, including polyhydroxy fullerenes (which are known to be environmentally safe and to have therapeutic properties) are heated or ignited by exposure to low-intensity (<10(2 ) W cm(-2)) continuous-wave laser irradiation.
View Article and Find Full Text PDFA wide variety of bioimaging techniques (e.g., ultrasound, computed X-ray tomography, magnetic resonance imaging (MRI), and positron emission tomography) are commonly employed for clinical diagnostics and scientific research.
View Article and Find Full Text PDF