Publications by authors named "Mouaz Al Kouzbary"

The aim of the present study is to investigate the complexity and stability of human ambulation and the implications on robotic prostheses control systems. Fourteen healthy individuals participate in two experiments, the first group run at three different speeds. The second group ascended and descended stairs of a five-level building block at a self-selected speed.

View Article and Find Full Text PDF

This comprehensive systematic review critically analyzes the current progress and challenges in automating transtibial prosthesis alignment. The manual identification of alignment changes in prostheses has been found to lack reliability, necessitating the development of automated processes. Through a rigorous systematic search across major electronic databases, this review includes the highly relevant studies out of an initial pool of 2111 records.

View Article and Find Full Text PDF

A novel powered ankle-foot prosthesis is designed. The effect of wearing the novel prosthesis and an energy-storage-and-return (ESAR) foot on lower-limb biomechanics is investigated to preliminarily evaluate the design. With necessary auxiliary materials, a non-amputated subject (a rookie at using prostheses) is recruited to walk on level ground with an ESAR and the novel powered prostheses separately.

View Article and Find Full Text PDF

Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the unconstrained environment.

View Article and Find Full Text PDF

3D printing is the most suitable method to manufacture the frame parts of powered ankle-foot prostheses but the compressive strength of the 3D-printed part needs to be ensured. According to the compression test standard ASTM D695, the effect of infill pattern and density, which is transferred to the mass of the standard specimen, on the compressive strength is investigated with a carbon fiber-reinforced nylon material. With the same infill pattern, specimens with more mass have a higher compressive strength.

View Article and Find Full Text PDF

Planar spiral spring is important for the dimensional miniaturisation of motor-based elastic actuators. However, when the stiffness calculation of the spring arm is based on simple beam bending theory, the results possess substantial errors compared with the stiffness obtained from finite-element analysis (FEA). It deems that the errors arise from the spiral length term in the calculation formula.

View Article and Find Full Text PDF

One of the major challenges in developing powered lower limb prostheses is emulating the behavior of an intact lower limb with different walking speeds over diverse terrains. Numerous studies have been conducted on control algorithms in the field of rehabilitation robotics to achieve this overarching goal. Recent studies on powered prostheses have frequently used a hierarchical control scheme consisting of three control levels.

View Article and Find Full Text PDF