The development of instruments combining multiple characterization and imaging tools drove huge advances in material science, engineering, biology, and other related fields. Notably, the coupling of SEM with micro-Raman spectrometry (μRaman) provides the means for the correlation between structural and physicochemical properties at the surface, while dual focused ion beam (FIB)-scanning electron microscopes (SEMs) operating under cryogenic conditions (cryo-FIB-SEM) allow for the analysis of the ultrastructure of materials in situ and in their native environment. In cryo-FIB-SEM, rapid and efficient methods for assessing vitrification conditions in situ are required for the accurate investigation of the original structure of hydrated samples.
View Article and Find Full Text PDFA simple and fast method for thickness measurements using electron probe microanalysis (EPMA) is described. The method is applicable on samples with a thickness smaller than the electron depth range and does not require any knowledge of instrumental parameters. The thickness is determined by means of the distance that electrons travel inside the sample before crossing through it.
View Article and Find Full Text PDFWe describe an approach enabling the identification of the elemental composition of uranium microparticles with undefined geometry using standardless quantitative electron probe microanalysis (EPMA) and micro-Raman spectrometry (MRS). The standardless procedure is based on a ZAF peak-to-background quantitative method in combination with Monte Carlo simulations. The experimental X-ray spectra were measured with an energy-dispersive spectrometer attached to a scanning electron microscope.
View Article and Find Full Text PDF