Publications by authors named "Mouaadh Abdelkarim"

Background: Artemisia campestris L. (AC) leaves are widely recognized for their importance in traditional medicine. Despite the considerable amount of research conducted on this plant overworld, the chemical composition and the biological activity of the leaves grown in Tunisia remains poorly investigated.

View Article and Find Full Text PDF

Paracetamol (PAR) is a commonly used antipyretic and analgesic agent, but its excessive usage can induce liver damage and major health consequences. Interleukin-35 (IL-35) is utilized to treat immunological disorders, intestinal illness, arthritis, allergic disease, hepatitis, and cancer. Thymoquinone (THYO) is also effective against a wide range of disorders.

View Article and Find Full Text PDF

Introduction: The molecular mechanisms behind obesity pathogenesis remain largely undefined. Impairment in the browning process of subcutaneous tissues proposed to contribute to obesity pathogenesis. In the current study, we aimed to assess whether the expression of brown fat genes in subcutaneous tissues in obese patients is altered as compared to non-obese patients.

View Article and Find Full Text PDF

Aims: The PR domain containing 16 () gene and the Phosphodiesterase 4D () gene are both an essential regulators in the thermogenesis process in the brown adipose tissues (BAT). The influence of polymorphisms in those genes on obesity and blood lipids profile is unknown particularly in the Saudi population, so the current study is aiming to explore that.

Methods: A case control format was used that involved 89 obese individual and 84 non-obese (control).

View Article and Find Full Text PDF

Evidence in humans suggests that limbic cortices are more active during rapid eye movement (REM or paradoxical) sleep than during waking, a phenomenon fitting with the presence of vivid dreaming during this state. In that context, it seemed essential to determine which populations of cortical neurons are activated during REM sleep. Our aim in the present study is to fill this gap by combining gene expression analysis, functional neuroanatomy, and neurochemical lesions in rats.

View Article and Find Full Text PDF

Background: Functional brown adipose tissue (BAT), involved in energy expenditure, has recently been detected in substantial amounts in adults. Formerly overlooked BAT has now become an attractive anti-obesity target.

Methods And Results: Molecular characterization of human brown and white adipocytes, using a myriad of techniques including high-throughput RNA sequencing and functional assays, showed that PAZ6 and SW872 cells exhibit classical molecular and phenotypic markers of brown and white adipocytes, respectively.

View Article and Find Full Text PDF

The role of brown adipose tissue (BAT) in human metabolism and its potential as an anti-obesity target organ have recently received much renewed attention. Following radiological detection of substantial amounts of BAT in adults by several independent research groups, an increasing number of studies are now dedicated to uncover BAT's genetic, developmental, and environmental determinants. In contrast to murine BAT, human BAT is not present as a single major fat depot in a well-defined location.

View Article and Find Full Text PDF

Objective: Bile acids (BA) participate in the maintenance of metabolic homeostasis acting through different signaling pathways. The nuclear BA receptor farnesoid X receptor (FXR) regulates pathways in BA, lipid, glucose, and energy metabolism, which become dysregulated in obesity. However, the role of FXR in obesity and associated complications, such as dyslipidemia and insulin resistance, has not been directly assessed.

View Article and Find Full Text PDF

The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action.

View Article and Find Full Text PDF

Here we show that gene expression of the nuclear receptor RORalpha is induced during adipogenesis, with RORalpha4 being the most abundantly expressed isoform in human and murine adipose tissue. Over-expression of RORalpha4 in 3T3-L1 cells impairs adipogenesis as shown by the decreased expression of adipogenic markers and lipid accumulation, accompanied by decreased free fatty acid and glucose uptake. By contrast, mouse embryonic fibroblasts from staggerer mice, which carry a mutation in the RORalpha gene, differentiate more efficiently into mature adipocytes compared to wild-type cells, a phenotype which is reversed by ectopic RORalpha4 restoration.

View Article and Find Full Text PDF

The role of the nuclear receptor FXR in adaptive thermogenesis was investigated using FXR-deficient mice. Despite elevated serum bile acid concentrations and increased mRNA expression profiles of thermogenic genes in brown adipose tissue, FXR-deficiency did not alter energy expenditure under basal conditions. However, FXR-deficiency accelerated the fasting-induced entry into torpor in a leptin-dependent manner.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) is a bile acid (BA)-activated nuclear receptor that plays a major role in the regulation of BA and lipid metabolism. Recently, several studies have suggested a potential role of FXR in the control of hepatic carbohydrate metabolism, but its contribution to the maintenance of peripheral glucose homeostasis remains to be established. FXR-deficient mice display decreased adipose tissue mass, lower serum leptin concentrations, and elevated plasma free fatty acid levels.

View Article and Find Full Text PDF