infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion.
View Article and Find Full Text PDFinfection is associated with several gastric diseases, including gastritis, peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Due to the prevalence and severeness of infection, a thorough understanding of this pathogen is necessary. Lipopolysaccharide, one of the major virulence factors of , can exert immunomodulating and immunostimulating functions on the host.
View Article and Find Full Text PDFLactoferricin (Lfcin) is an amphipathic, cationic peptide derived from proteolytic cleavage of the N-lobe of lactoferrin (Lf). Lfcin and its derivatives possess broad-spectrum antibacterial and antifungal activities. However, unlike their antibacterial functions, the modes of action of Lfcin and its derivatives against pathogenic fungi are less well understood.
View Article and Find Full Text PDFNADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) is a nuclear-encoded core subunit of human mitochondrial complex I. Defects in NDUFS8 are associated with Leigh syndrome and encephalomyopathy. Cell-penetrating peptide derived from the HIV-1 transactivator of transcription protein (TAT) has been successfully applied as a carrier to bring fusion proteins into cells without compromising the biological function of the cargoes.
View Article and Find Full Text PDFinfection is linked to serious gastric-related diseases including gastric cancer. However, current therapies for treating infection are challenged by the increased antibiotic resistance of . Therefore, it is in an urgent need to identify novel targets for drug development against infection.
View Article and Find Full Text PDFinfection is the etiology of several gastric-related diseases including gastric cancer. Cytotoxin associated gene A (CagA), vacuolating cytotoxin A (VacA) and α-subunit of urease (UreA) are three major virulence factors of , and each of them has a distinct entry pathway and pathogenic mechanism during bacterial infection. can shed outer membrane vesicles (OMVs).
View Article and Find Full Text PDFThe emergence of drug-resistant fungal pathogens is becoming increasingly serious due to overuse of antifungals. Antimicrobial peptides have potent activity against a broad spectrum of pathogens, including fungi, and are considered a potential new class of antifungals. In this study, we examined the activities of the newly designed peptides P-113Du and P-113Tri, together with their parental peptide P-113, against the human fungal pathogen Candida albicans.
View Article and Find Full Text PDFGalectin-8, a beta-galactoside-binding lectin, is upregulated in the gastric tissues of rhesus macaques infected with Helicobacter pylori. In this study, we found that H. pylori infection triggers intracellular galectin-8 aggregation in human-derived AGS gastric epithelial cells, and that these aggregates colocalize with lysosomes.
View Article and Find Full Text PDFTissue stroma is known to be important in regulating Hp-mediated inflammation, but its interaction with Hp and dendritic cells (DCs) remains to be determined. To this end, the potential crosstalk between H. pylori (Hp) infected gastric stromal cells (Hp-GSCs) and DCs was investigated.
View Article and Find Full Text PDFHelicobacter pylori is a notorious human pathogen and the appearance of antibiotic resistance of this bacterium has posed a serious threat to human health. Lipopolysaccharide (LPS) is a key virulence factor and plays important roles in pathogenesis of H. pylori infection.
View Article and Find Full Text PDFHigh energy ionizing radiation can cause DNA damage and cell death. During clinical radiation therapy, the radiation dose could range from 15 to 60 Gy depending on targets. While 2 Gy radiation has been shown to cause cancer cell death, studies also suggest a protective potential by low dose radiation.
View Article and Find Full Text PDFAmong the five enzyme complexes in the oxidative phosphorylation system, NADH-coenzyme Q oxidoreductase (also called complex I) is the largest, most intricate, and least understood. This enzyme complex spans the inner mitochondrial membrane and catalyzes the first step of electron transfer by the oxidation of NADH, and thereby provides two electrons for the reduction of quinone to quinol. Complex I deficiency is associated with many severe mitochondrial diseases, including Leber hereditary optic neuropathy and Leigh syndrome.
View Article and Find Full Text PDFThe bacterial H(+)-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1-3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1.
View Article and Find Full Text PDFBackground: NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2), containing one iron sulfur cluster ([2Fe-2S] binuclear cluster N1a), is one of the core nuclear-encoded subunits existing in human mitochondrial complex I. Defects in this subunit have been associated with Parkinson's disease, Alzheimer's disease, Bipolar disorder, and Schizophrenia. The aim of this study is to examine the mitochondrial targeting of NDUFV2 and dissect the pathogenetic mechanism of one human deletion mutation present in patients with early-onset hypertrophic cardiomyopathy and encephalopathy.
View Article and Find Full Text PDFHelicobacter pylori is a bacterium that causes chronic active gastritis and peptic ulcers. Drugs targeting H. pylori phosphopantetheine adenylyltransferase (HpPPAT), which is involved in CoA biosynthesis, may be useful.
View Article and Find Full Text PDFLipopolysaccharide (LPS) is considered as an important virulence factor of Helicobacter pylori, and contributes to infection persistence and disease severity. ADP-L-glycero-D-manno-heptose-6-epimerase is an enzyme essential for LPS synthesis and understanding of its biochemistry is critical for drug development. We cloned one putative ortholog of Escherichia colirfaD, HP0859, from H.
View Article and Find Full Text PDFComplex I pumps protons across the membrane by using downhill redox energy. Here, to investigate the proton pumping mechanism by complex I, we focused on the largest transmembrane subunit NuoL (Escherichia coli ND5 homolog). NuoL/ND5 is believed to have H(+) translocation site(s), because of a high sequence similarity to multi-subunit Na(+)/H(+) antiporters.
View Article and Find Full Text PDFThe proton-translocating NADH-quinone oxidoreductase (complex I) is one of five enzyme complexes in the oxidative phosphorylation system in mammalian mitochondria. Complex I is composed of 46 different subunits, 7 of which are encoded by mitochondrial DNA. Defects of complex I are involved in many human mitochondrial diseases; therefore, the authors proposed to use the NDI1 gene encoding a single subunit NADH dehydrogenase of Saccharomyces cerevisiae for repair of respiratory activity.
View Article and Find Full Text PDFThe ND4L subunit is the smallest mitochondrial DNA-encoded subunit of the proton-translocating NADH-quinone oxidoreductase (complex I). In an attempt to study the functional and structural roles of the NuoK subunit (the Escherichia coli homologue of ND4L) of the bacterial NADH-quinone oxidoreductase (NDH-1), we have performed a series of site-specific mutations on the nuoK gene of the NDH-1 operon by using the homologous recombination technique. The amino acid residues we targeted included two highly conserved glutamic acids that are presumably located in the middle of the membrane and several arginine residues that are predicted to be on the cytosolic side.
View Article and Find Full Text PDFThe ND6 subunit is one of seven mitochondrial DNA-encoded subunits of the proton-translocating NADH-quinone oxidoreductase (complex I). Physiological importance of the ND6 subunit is becoming increasingly apparent because a number of mutations leading to amino acid changes in this subunit have been found to be associated with known mitochondrial diseases. Using the Escherichia coli enzyme (NDH-1), we have investigated the NuoJ subunit (the E.
View Article and Find Full Text PDFThe H(+)(Na(+))-translocating NADH-quinone (Q) oxidoreductase (NDH-1) of Escherichia coli is composed of 13 different subunits (NuoA-N). Subunit NuoA (ND3, Nqo7) is one of the seven membrane domain subunits that are considered to be involved in H(+)(Na(+)) translocation. We demonstrated that in the Paracoccus denitrificans NDH-1 subunit, Nqo7 (ND3) directly interacts with peripheral subunits Nqo6 (PSST) and Nqo4 (49 kDa) by using cross-linkers (Di Bernardo, S.
View Article and Find Full Text PDFThe proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (designated Nqo1-14), seven of which are located in the membrane domain and the other seven in the peripheral domain. It has been previously reported that membrane domain subunit Nqo7 (ND3) directly interacts with peripheral subunit Nqo6 (PSST) by using a cross-linker, m-maleimidobenzoyl-N-hydrosuccinimide ester, and heterologous expression [Di Bernardo, S., and Yagi, T.
View Article and Find Full Text PDFThe proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (Nqo1-Nqo14). Of these, seven subunits (Nqo7, Nqo8, and Nqo10-14) which are equivalent to the mitochondrial DNA-encoded subunits of complex I constitute the membrane segment of the enzyme complex; the remaining subunits make up the peripheral part of the enzyme. We report here on the biochemical characterization and heterologus expression of the Nqo10 subunit.
View Article and Find Full Text PDFThe proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans consists of at least 14 unlike subunits (designated Nqo1-14). The NDH-1 is composed of two segments (the peripheral and membrane segments). The membrane domain segment appears to be made up of seven subunits (Nqo7, -8, -10-14).
View Article and Find Full Text PDF