The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal membranes. The structure determined in this study belongs to the p-hydroxybenzoate hydroxylase family in the glutathione reductase superfamily.
View Article and Find Full Text PDFGeranylgeranyl reductase from Sulfolobus acidocaldarius was shown to catalyze the reduction of geranylgeranyl groups in the precursors of archaeal membrane lipids, generally reducing all four double bonds. However, when geranylgeranyl diphosphate was subjected to the reductase reaction, only three of the four double bonds were reduced. Mass spectrometry and acid hydrolysis indicated that the allylic double bond was preserved in the partially reduced product derived from geranylgeranyl diphosphate.
View Article and Find Full Text PDFComplete saturation of the geranylgeranyl groups of biosynthetic intermediates of archaeal membrane lipids is an important reaction that confers chemical stability on the lipids of archaea, which generally inhabit extreme conditions. An enzyme encoded by the AF0464 gene of a hyperthermophilic archaeon, Archaeoglobus fulgidus, which is a distant homologue of plant geranylgeranyl reductases and an A. fulgidus menaquinone-specific prenyl reductase [Hemmi H, Yoshihiro T, Shibuya K, Nakayama T, & Nishino T (2005) J Bacteriol187, 1937-1944], was recombinantly expressed and purified, and its geranylgeranyl reductase activity was examined.
View Article and Find Full Text PDF