Publications by authors named "Motohiko Ezawa"

The chiral nature of active matter plays an important role in the dynamics of active matter interacting with chiral structures. Skyrmions are chiral objects, and their interactions with chiral nanostructures can lead to intriguing phenomena. Here, we explore the random-walk dynamics of a thermally activated chiral skyrmion interacting with a chiral flower-like obstacle in a ferromagnetic layer, which could create topology-dependent outcomes.

View Article and Find Full Text PDF

We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal.

View Article and Find Full Text PDF

We propose a skyrmion-based universal quantum computer. Skyrmions have the helicity degree of freedom in frustrated magnets, where twofold degenerated Bloch-type skyrmions are energetically favored by the magnetic dipole-dipole interaction. We construct a qubit based on them.

View Article and Find Full Text PDF

Skyrmions and bimerons are versatile topological spin textures that can be used as information bits for both classical and quantum computing. The transformation between isolated skyrmions and bimerons is an essential operation for computing architecture based on multiple different topological bits. Here we report the creation of isolated skyrmions and their subsequent transformation to bimerons by harnessing the electric current-induced Oersted field and temperature-induced perpendicular magnetic anisotropy variation.

View Article and Find Full Text PDF

We analyze a binary classification problem by using a support vector machine based on variational quantum-circuit model. We propose to solve a linear equation of the support vector machine by using a [Formula: see text] matrix expansion. In addition, it is shown that an arbitrary quantum state is prepared by optimizing a universal quantum circuit representing an arbitrary [Formula: see text] based on the steepest descent method.

View Article and Find Full Text PDF

Magnetic skyrmions are potential building blocks for future information storage and computing devices. Here, we computationally study the skyrmion dynamics in a cross structure made of two ferromagnetic nanotracks. We show that by controlling the skyrmion motion in the cross structure using spin currents, it is possible to realize the transcription of skyrmion at the intersection of the cross structure at certain conditions.

View Article and Find Full Text PDF

A magnetic bimeron is a topologically nontrivial spin texture carrying an integer topological charge, which can be regarded as the counterpart of the skyrmion in easy-plane magnets. The controllable creation and manipulation of bimerons are crucial for practical applications based on topological spin textures. Here, we analytically and numerically study the dynamics of an antiferromagnetic bimeron driven by a spin current.

View Article and Find Full Text PDF

Helicity indicates the in-plane magnetic-moment swirling direction of a skyrmionic configuration. The ability to reverse the helicity of a skyrmionic bubble via purely electrical means has been predicted in frustrated magnetic systems; however, it has been challenging to observe this experimentally. The current-driven helicity reversal of the skyrmionic bubble in a nanostructured frustrated Fe Sn magnet is experimentally demonstrated.

View Article and Find Full Text PDF

The field of magnetic skyrmions has been actively investigated across a wide range of topics during the last decades. In this topical review, we mainly review and discuss key results and findings in skyrmion research since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.

View Article and Find Full Text PDF

Transition metal dichalcogenides XTe (X = Mo, W) have been shown to be second-order topological insulators based on first-principles calculations, while topological hinge states have been shown to emerge based on the associated tight-binding model. The model is equivalent to the one constructed from a loop-nodal semimetal by adding mass terms and spin-orbit interactions. We propose to study a chiral-symmetric model obtained from the original Hamiltonian by simplifying it but keeping almost identical band structures and topological hinge states.

View Article and Find Full Text PDF

Magnetization dynamics driven by an electric field could provide long-term benefits to information technologies because of its ultralow power consumption. Meanwhile, the Dzyaloshinskii-Moriya interaction in interfacially asymmetric multilayers consisting of ferromagnetic and heavy-metal layers can stabilize topological spin textures, such as chiral domain walls, skyrmions, and skyrmion bubbles. These topological spin textures can be controlled by an electric field and hold promise for building advanced spintronic devices.

View Article and Find Full Text PDF

We investigate a topological switch between second-order topological insulators (SOTIs) and topological crystalline insulators (TCIs). Both the SOTI and the TCI are protected by the mirror and inversion symmetries, for which we define the bulk topological numbers of the same type. When an in-plane magnetic field is introduced parallel to one of the helical edges, the system becomes a TCI.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetic skyrmions are unique magnetic structures with potential uses in advanced technologies like spintronics, but traditional skyrmions face challenges such as the skyrmion Hall effect, which causes them to drift toward device edges and get destroyed.
  • Recent research has demonstrated the stability and movement of antiferromagnetically coupled skyrmions in ferrimagnetic GdFeCo films, which could enhance their application potential.
  • Using element-specific X-ray imaging, the study confirmed that these skyrmions can move at approximately 50 m/s with a reduced skyrmion Hall angle, suggesting promising avenues for future research in skyrmionic materials.
View Article and Find Full Text PDF

A second-order topological insulator in d dimensions is an insulator which has no d-1 dimensional topological boundary states but has d-2 dimensional topological boundary states. It is an extended notion of the conventional topological insulator. Higher-order topological insulators have been investigated in square and cubic lattices.

View Article and Find Full Text PDF

The helicity-orbital coupling is an intriguing feature of magnetic skyrmions in frustrated magnets. Here we explore the skyrmion dynamics in a frustrated magnet based on the J -J -J classical Heisenberg model explicitly by including the dipole-dipole interaction. The skyrmion energy acquires a helicity dependence due to the dipole-dipole interaction, resulting in the current-induced translational motion with a fixed helicity.

View Article and Find Full Text PDF

Lack of spatial inversion symmetry in crystals offers a rich variety of physical phenomena, such as ferroelectricity and nonlinear optical effects (for example, second harmonic generation). One such phenomenon is magnetochiral anisotropy, where the electrical resistance depends on the current direction under the external magnetic field. We demonstrate both experimentally and theoretically that this magnetochiral anisotropy is markedly enhanced by orders of magnitude once the materials enter into a superconducting state.

View Article and Find Full Text PDF

Magnetic skyrmions are particle-like topological excitations in ferromagnets, which have the topo-logical number Q = ± 1, and hence show the skyrmion Hall effect (SkHE) due to the Magnus force effect originating from the topology. Here, we propose the counterpart of the magnetic skyrmion in the antiferromagnetic (AFM) system, that is, the AFM skyrmion, which is topologically protected but without showing the SkHE. Two approaches for creating the AFM skyrmion have been described based on micromagnetic lattice simulations: (i) by injecting a vertical spin-polarized current to a nanodisk with the AFM ground state; (ii) by converting an AFM domain-wall pair in a nanowire junction.

View Article and Find Full Text PDF

A honeycomb structure has a natural extension to three dimensions. Simple examples are hyperhoneycomb and stripy-honeycomb lattices, which are realized in β-Li_{2}IrO_{3} and γ-Li_{2}IrO_{3}, respectively. We propose a wide class of three-dimensional (3D) honeycomb lattices which are loop-nodal semimetals.

View Article and Find Full Text PDF

Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges.

View Article and Find Full Text PDF

Magnetic skyrmions are promising candidates as information carriers for the next-generation spintronic devices because of their small size, facile current-driven motion and topological stability. The controllable nucleation and motion of skyrmions in magnetic nanostructures will be essential in future skyrmionic devices. Here, we present the microwave assisted nucleation and motion of skyrmion-chains in magnetic nanotrack by micromagnetic simulation.

View Article and Find Full Text PDF

Topological insulators (TIs) show rich phenomena and functions which can never be realized in ordinary insulators. Most of them come from the peculiar surface or edge states. Especially, the quantized anomalous Hall effect (QAHE) without an external magnetic field is realized in the two-dimensional ferromagnet on a three-dimensional TI which supports the dissipationless edge current.

View Article and Find Full Text PDF

Magnetic skyrmions are localized and topologically protected spin configurations, which are of both fundamental and applied interests for future electronics. In this work, we propose a voltage-gated skyrmion transistor within the well-established framework of micromagnetics. Its operating conditions and processes have been theoretically investigated and demonstrated, in which the gate voltage can be used to switch on/off a circuit.

View Article and Find Full Text PDF

Magnetic skyrmions are topologically protected nanoscale objects, which are promising building blocks for novel magnetic and spintronic devices. Here, we investigate the dynamics of a skyrmion driven by a spin wave in a magnetic nanowire. It is found that (i) the skyrmion is first accelerated and then decelerated exponentially; (ii) it can turn L-corners with both right and left turns; and (iii) it always turns left (right) when the skyrmion number is positive (negative) in the T- and Y-junctions.

View Article and Find Full Text PDF

Magnetic skyrmions, which are topological particle-like excitations in ferromagnets, have attracted a lot of attention recently. Skyrmionics is an attempt to use magnetic skyrmions as information carriers in next generation spintronic devices. Proposals of manipulations and operations of skyrmions are highly desired.

View Article and Find Full Text PDF