Publications by authors named "Motoharu Yoshida"

How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented.

View Article and Find Full Text PDF

Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer's disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession.

View Article and Find Full Text PDF

Hippocampal local field potentials (LFP) are highly related to behavior and memory functions. It has been shown that beta band LFP oscillations are correlated with contextual novelty and mnemonic performance. Evidence suggests that changes in neuromodulators, such as acetylcholine and dopamine, during exploration in a novel environment underlie changes in LFP.

View Article and Find Full Text PDF

Persistent neuronal firing is often observed in working memory and temporal association tasks both in humans and animals, and is believed to retain necessary information in these tasks. We have reported that hippocampal CA1 pyramidal cells are able to support persistent firing through intrinsic mechanisms in the presence of cholinergic agonists. However, it still remains largely unknown how persistent firing is affected by the development of animals and aging.

View Article and Find Full Text PDF

Aim: The aim of this study was to investigate the prognostic factors and evaluate the change in inflammatory markers of patients with coronavirus disease 2019 (COVID-19) requiring mechanical ventilation.

Methods: This retrospective observational study conducted from April 1, 2020, to February 18, 2021, included 97 adult patients who required mechanical ventilation for severe COVID-19 pneumonia and excluded nonintubated patients with a positive COVID-19 polymerase chain reaction test and those who had any obvious bacterial infection on admission. All patients were followed up to discharge or death.

View Article and Find Full Text PDF

Persistent firing is believed to be a cellular correlate of working memory. While the effects of noradrenaline (NA) on working memory have widely been described, its effect on the cellular mechanisms of persistent firing remains largely unknown. Using intracellular recordings, we demonstrate that persistent firing is supported by individual neurons in hippocampal CA1 pyramidal cells through cholinergic receptor activation, but is dramatically attenuated by NA.

View Article and Find Full Text PDF

Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

The hippocampal formation plays a role in mnemonic tasks and epileptic discharges in vivo. In vitro, these functions and malfunctions may relate to persistent firing (PF) and depolarization block (DB), respectively. Pyramidal neurons of the CA1 field have previously been reported to engage in either PF or DB during cholinergic stimulation.

View Article and Find Full Text PDF

For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1].

View Article and Find Full Text PDF

For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1].

View Article and Find Full Text PDF

Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information.

View Article and Find Full Text PDF

The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear.

View Article and Find Full Text PDF

During working memory tasks, the hippocampus exhibits synchronous theta-band activity, which is thought to be correlated with the short-term memory maintenance of salient stimuli. Recent studies indicate that the hippocampus contains the necessary circuitry allowing it to generate and sustain theta oscillations without the need of extrinsic drive. However, the cellular and network mechanisms supporting synchronous rhythmic activity are far from being fully understood.

View Article and Find Full Text PDF

Housing animals in enriched environments (EEs) results in improved learning and memory (L&M) performance. While increased intrinsic cellular excitability in the hippocampal neurons might underlie the environmental enrichment-dependent L&M enhancement, literature in respect to this remains scarce and controversial. In this study, we explore whether intrinsic cellular excitability in hippocampal CA1 pyramidal cells is modulated differently, depending on housing duration and anatomical location of cells.

View Article and Find Full Text PDF

Persistent firing is believed to support short-term information retention in the brain. Established hypotheses make use of the recurrent synaptic connectivity to support persistent firing. However, this mechanism is known to suffer from a lack of robustness.

View Article and Find Full Text PDF

Hippocampal place cells that are activated sequentially during active waking get reactivated in a temporally compressed (5-20 times) manner during slow-wave-sleep and quiet waking. The two-stage model of the hippocampus suggests that neural activity during awaking supports encoding function while temporally compressed reactivation (replay) supports consolidation. However, the mechanisms supporting different neural activity with different temporal scales during encoding and consolidation remain unclear.

View Article and Find Full Text PDF

Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing.

View Article and Find Full Text PDF

Medial temporal lobe (MTL) areas are crucial for memory tasks such as spatial working memory and temporal association memory, which require an active maintenance of memory for a short period of time (a few hundred milliseconds to tens of seconds). Recent work has shown that the projection from layer III neurons in the medial entorhinal cortex (MEC) to hippocampal region CA1, the temporoammonic (TA) pathway, might be specially important for these memory tasks. In addition, lesions to the entorhinal cortex disrupt persistent firing in CA1 which is believed to support active maintenance of memory.

View Article and Find Full Text PDF

Short-term information retention is crucial for information processing in the brain. It has long been suggested that the hippocampal CA3 region is able to support short-term information retention through persistent neural firing. Theoretical studies have shown that this persistent firing can be supported by abundant excitatory recurrent connections in CA3.

View Article and Find Full Text PDF
Article Synopsis
  • The hippocampus is super important for remembering things for a short time, but scientists aren't sure how it works inside.
  • Most models of how this memory works focus on a certain part called CA3, which is thought to help keep memories alive.
  • New research shows that another part, called CA1, can also help remember things actively by keeping brain cells firing for a long time after they get a little boost.
View Article and Find Full Text PDF

We explore patterns in the spike timing of neurons receiving periodic inputs, with an emphasis on stable characteristics which are realized in both models and in-vitro whole-cell recordings. We report on whole-cell recordings of pyramidal CA1 cells from rat hippocampus and entorhinal cortex and compare this data to model simulations. Cells were injected with a constant current to induce a steady firing rate and then a modest rhythm was added which altered the spike times and their corresponding phases relative to the rhythm.

View Article and Find Full Text PDF

Suppression of cholinergic receptors and inactivation of the septum impair short-term memory, and disrupt place cell and grid cell activity in the medial temporal lobe (MTL). Location-dependent hippocampal place cell firing during active waking, when the acetylcholine level is high, switches to time-compressed replay activity during quiet waking and slow-wave-sleep (SWS), when the acetylcholine level is low. However, it remains largely unknown how acetylcholine supports short-term memory, spatial navigation, and the functional switch to replay mode in the MTL.

View Article and Find Full Text PDF

Neurons from layer II of the medial entorhinal cortex show subthreshold membrane potential oscillations (SMPOs) which could contribute to theta-rhythm generation in the entorhinal cortex and to generation of grid cell firing patterns. However, it is unclear whether single neurons have a fixed unique oscillation frequency or whether their frequency varies depending on the mean membrane potential in a cell. We therefore examined the frequency of SMPOs at different membrane potentials in layer II stellate-like cells of the rat medial entorhinal cortex in vitro.

View Article and Find Full Text PDF

Neurons sum their input by spatial and temporal integration. Temporally, presynaptic firing rates are converted to dendritic membrane depolarizations by postsynaptic receptors and ion channels. In several regions of the brain, including higher association areas, the majority of firing rates are low.

View Article and Find Full Text PDF