Publications by authors named "Motoharu Imai"

High-pressure techniques open exploration of functional materials in broad research fields. An established diamond anvil cell with a boron-doped diamond heater and transport measurement terminals has performed the high-pressure synthesis of a cubic SnS superconductor. X-ray diffraction and Raman spectroscopy reveal that the SnS phase is stable in the pressure range of > 5 GPa in a decompression process.

View Article and Find Full Text PDF

Magnesium silicide (MgSi) is a promising eco-friendly thermoelectric material, which has been extensively studied in recent times. However, its phase behavior at high pressures and temperatures remains unclear. To this end, in this study, X-ray diffraction analysis was conducted at high pressures ranging from 0 to 11.

View Article and Find Full Text PDF

We report the magnetism and transport properties of the Heusler compound Fe2+x V1-x Al at  -0.10  ⩽  x  ⩽  0.20 under pressure and a magnetic field.

View Article and Find Full Text PDF

The first-order transition at T(0) =  270 K for the platinum-based SrPt2Sb2 superconductor was investigated using x-ray diffraction and magnetic susceptibility measurements. When polycrystalline SrPt2Sb2 was cooled down through T(0), the structure was transformed from monoclinic to a modulated orthorhombic structure, and no magnetic order was formed, which illustrates the possibility of a charge density wave (CDW) transition at T(0). SrPt2Sb2 can thus be a new example to examine the interplay of CDW and superconductivity in addition to SrPt2As2, BaPt2As2, and LaPt2Si2.

View Article and Find Full Text PDF

Two kinds of magnesium-based compounds Mg9Si5 and Mg4Si3Al have been prepared under high pressure and high temperature (HPHT) conditions of 5 GPa at 900-1100 °C. Single crystal study revealed that Mg9Si5 crystallizes in space group P6(3) (No. 173) with the lattice parameters a = 12.

View Article and Find Full Text PDF

A ternary type-I Si clathrate K(8)Ga(8)Si(38) has been revealed to be an indirect band gap semiconducting material with an energy gap (E(g)) of approximately 0.10 eV, which is much smaller than the calculated E(g) value that is 0.15 eV wider than E(g) of elemental Si with the diamond-type structure.

View Article and Find Full Text PDF

X-ray diffraction measurements at high pressures and high temperatures revealed that Si clathrate Ba 8Si 46 is formed by a solid-phase reaction of an 8:30 molar mixture of SrSi 2-phase BaSi 2 and Si after BaSi 2 undergoes the BaSi 2-to-EuGe 2 and the EuGe 2-to-SrSi 2 transitions. The volume reduction during the formation of Ba 8Si 46 is the largest, 7.6%, among the observed transitions.

View Article and Find Full Text PDF

Electrical resistivity and Hall coefficient measurements of single-crystalline CaAl(2)Si(2) revealed that CaAl(2)Si(2) is a metal in which both electrons and holes contribute to the transport properties; its dominant carriers are holes at temperature below 150 K but electrons above that temperature.

View Article and Find Full Text PDF