Publications by authors named "Motiyenko R"

The rotational spectrum (4-40 GHz and 50-330 GHz) has been measured and analyzed for trifluoroacetaldehyde, also known as fluoral (CFCHO), which is one of the degradation products of the fluorinated contaminants emitted into the atmosphere. The complexity of the spectroscopic analysis of this molecule arises from the strong coupling between the internal rotation motion of CF group and the overall rotation of the molecule. The value obtained for its coupling constant (ρ = 0.

View Article and Find Full Text PDF

Using the Yebes 40m and IRAM 30m radiotelescopes, we detected two series of harmonically related lines in space that can be fitted to a symmetric rotor. The lines have been seen towards the cold dense cores TMC-1, L483, L1527, and L1544. High level of theory calculations indicate that the best possible candidate is the acetyl cation, CHCO, which is the most stable product resulting from the protonation of ketene.

View Article and Find Full Text PDF

Context: S-methyl thioformate CHSC(O)H is a monosulfur derivative of methyl formate, a relatively abundant component of the interstellar medium (ISM). S-methyl thioformate being, thermodynamically, the most stable isomer, it can be reasonably proposed for detection in the ISM.

Aims: This work aims to experimentally study and theoretically analyze the ground and first torsional excited states for CHSC(O)H in a large spectral range for astrophysical use.

View Article and Find Full Text PDF

We present a millimeter-wave Fourier transform emission spectrometer whose design is based on the application of a direct digital synthesizer (DDS) up-converted into the Ku-band with subsequent frequency multiplication. The spectrometer covers the frequency range from 50 GHz to 110 GHz and from 150 GHz to 330 GHz. Owing to the fast frequency switching ability of the DDS in the spectrometer, the same radiation source is used both as a generator of short polarizing pulses and as a local oscillator for the heterodyne receiving system.

View Article and Find Full Text PDF

Context: The analysis of isomeric species of a compound observed in the interstellar medium (ISM) is a useful tool to understand the chemistry of complex organic molecules. It could, likewise, assist in the detection of new species.

Aims: Our goal consists in analyzing one of the two most stable species of the CHO family, methyl ketene, whose actual rotational parameters are not precise enough to allow its detection in the ISM.

View Article and Find Full Text PDF
Article Synopsis
  • * Pure inversion transitions of NH molecules at specific frequencies (1.073 THz and 1.083 THz) were measured with THz frequency equipment under different conditions, including varying gas pressures and MIR tuning.
  • * The researchers achieved notable gains, with a peak of 10.1 dB×m at room temperature for the (3,3) transition and 6.4 dB×m for the (4,4) transition, marking some of the highest continuous-wave THz
View Article and Find Full Text PDF

Cyanoacetylene, HCC-CN is a ubiquitous molecule in the Universe. However, its interstellar chemistry is not well understood and its understanding requires laboratory data including rotational spectroscopy of possible products coming from a reaction with another compounds. In this study we present the first spectroscopic characterization of gauche conformation of 4-hydroxy-2-butynenitrile (HOCHCCCN), a formal adduct of cyanoacetylene on formaldehyde, in the frequency range up to 500 GHz.

View Article and Find Full Text PDF

Methoxymethanol, CHOCHOH is a very interesting candidate for detection in the interstellar medium since it can be formed in the recombination reaction between two radicals considered as intermediates in methanol formation: CHO (already detected in the ISM) and CHOH. It could also be formed by the addition of CHO to formaldehyde (another abundant compound in the ISM) followed by abstraction of a hydrogen radical. In this study, we present the first spectroscopic characterization of methoxymethanol in the millimeter-wave range augmented by high level quantum chemical calculations.

View Article and Find Full Text PDF

Methyl vinyl ketone is the second major oxidation product of isoprene, and as such an important volatile organic compound present in the troposphere. In the present study, quantum chemical calculations coupled to high-resolution millimeter-wave spectroscopy have been performed to characterize the ground and first excited vibrational states of the two stable conformers. Equilibrium structures, internal rotation barriers, and relative energies have been calculated at the MP2 and M062X levels of theory.

View Article and Find Full Text PDF

Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CHReO and CHReO isotopologues in the gas phase with unprecedented precision.

View Article and Find Full Text PDF

Context: More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection.

View Article and Find Full Text PDF

We report on the tentative detection of trans ethyl methyl ether (tEME), t-CHCHOCH, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CHCHCHOH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data.

View Article and Find Full Text PDF

Methacrolein is a major oxidation product of isoprene emitted in the troposphere. New spectroscopy information is provided with the aim to allow unambiguous identification of this complex molecule, characterized by a large amplitude motion associated with the methyl top. State-of-the-art millimeter-wave spectroscopy experiments coupled to quantum chemical calculations have been performed.

View Article and Find Full Text PDF

The HCN trimer aminomalononitrile (H2NCH(CN)2, AMN) is considered as a key compound in prebiotic chemistry and a potential candidate for detection in the interstellar medium. In this view, we studied the rotational spectrum of AMN in the 120-245 GHz frequency range. The spectroscopic work was augmented by high-level ab initio calculations.

View Article and Find Full Text PDF

The first theoretical approach aimed at accounting for the energy levels of a non-rigid molecule displaying asymmetric-top asymmetric-frame internal rotation is developed. It is applied to a line position analysis of the high-resolution spectrum of the non-rigid CH2DOH molecule and allows us to carry out a global analysis of a data set consisting of already available data and of microwave and far infrared transitions measured in this work. The analysis is restricted to the three lowest lying torsional levels (e0, e1, and o1), to K ⩽ 11, and to J ⩽ 26.

View Article and Find Full Text PDF

The millimeter-wave rotational spectrum of an organomercury compound, ethylmercury hydride, has been recorded and assigned for the first time. The spectroscopic study is complemented by quantum chemical calculations taking into account relativistic effects on the mercury atom. The very good agreement between theoretical and experimental molecular parameters validates the chosen ab initio method, in particular its capability to predict accurate quartic centrifugal distortion constants related to this type of compound.

View Article and Find Full Text PDF

The microwave spectrum of cyclopropylphosphine-borane, C(3)H(5)PH(2)-BH(3), has been investigated in the frequency range 150-195 GHz. The spectral assignment was supported by high level ab initio calculations. Two stable conformations have been predicted: the most stable antiperiplanar form and synclinal form that is higher in energy by 7.

View Article and Find Full Text PDF

The millimeter-wave rotational spectrum of vinyltellurol has been recorded and assigned for the first time. To support the spectrum assignment, high level ab initio calculations have been carried out. Geometries, total electronic energies, and harmonic vibrational frequencies have been determined at the MP2 level.

View Article and Find Full Text PDF

The millimeter-wave rotational spectrum of ethanetellurol has been recorded and assigned for the first time. The spectroscopic study has been complemented by high level ab initio calculations. Geometries, total electronic energies, and harmonic vibrational frequencies have been determined at the MP2 level.

View Article and Find Full Text PDF

Spectra of ethyl carbamate (urethane) in the gas phase have been recorded in the microwave (4-20 GHz), millimeter-wave (49-118 GHz and 150-235 GHz) and mid-infrared (1000-1900 cm(-1)) regions. At the same time, high level ab initio calculations have been performed in order to both predict the experimental results and help in understanding the physical properties of the system. An extensive set of spectroscopic constants for the two most stable conformers in the gas phase, that might be useful for astrophysical databases, has been derived from the observed signals.

View Article and Find Full Text PDF