Purpose: Surface mould brachytherapy (SMBT) is ideal in treating superficial skin cancer over the curved surface of the nasal ala. We describe the process of initiating and optimizing SMBT treatment at our institution including clinical workflow, generation of three dimensional (3D) printed custom applicators, and clinical outcomes.
Methods And Materials: Planning CT scans were used to acquire images for delineating target volumes.
Purpose: The purpose of this study was to quantitatively assess the CT metal-induced artifacts from a novel direction-modulated brachytherapy (DMBT) tandem applicator prototype, recently designed for cervical cancer treatments.
Methods And Materials: A water-based pelvic phantom was constructed for CT scanning. The DMBT applicator was imaged using our institutional protocol, one with higher kVp and mAs settings, and repetition of these protocols using 3-mm slices.
Dosimetric effects of gadolinium based contrast media (Gadovist) were evaluated for the Elekta MRI linear accelerator using the research version of the Monaco treatment planning system (TPS). In order to represent a gadolinium uptake, the contrast was manually assigned to a phantom as well as to the gross tumour volume (GTV) of 6 glioblastoma multiforme (GBM) patients. A preliminary estimate of the dose enhancement, due to gadolinium, was performed using the phantom irradiated with a single beam.
View Article and Find Full Text PDFA new GPU-based Monte Carlo dose calculation algorithm (GPUMCD), devel-oped by the vendor Elekta for the Monaco treatment planning system (TPS), is capable of modeling dose for both a standard linear accelerator and an Elekta MRI linear accelerator. We have experimentally evaluated this algorithm for a standard Elekta Agility linear accelerator. A beam model was developed in the Monaco TPS (research version 5.
View Article and Find Full Text PDFPurpose: This paper provides a comparison between a fast, commercial, in-patient Monte Carlo dose calculation algorithm (GPUMCD) and geant4. It also evaluates the dosimetric impact of the application of an external 1.5 T magnetic field.
View Article and Find Full Text PDFPurpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR.
Methods And Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations.