Publications by authors named "Motahareh Taki"

Trinucleotide repeat (TNR) sequences widely exist in nature and their overgrowth is associated with two dozen neurodegenerative diseases in humans. These sequences have a unique helical flexibility, which affects their biophysical properties. A number of biophysical properties of these sequences have been studied in the past except their surface-tethered monolayers.

View Article and Find Full Text PDF

Trinucleotide repeat (TNR) sequences introduce sequence-directed flexibility in the genomic makeup of all living species leading to unique non-canonical structure formation. In humans, the expansions of TNR sequences are responsible for almost 24 neurodegenerative and neuromuscular diseases because their unique structures disrupt cell functions. The biophysical studies of these sequences affect their electrophoretic mobility and spectroscopic signatures.

View Article and Find Full Text PDF

DNA repeat expansion sequences cause a myriad of neurological diseases when they expand beyond a critical threshold. Previous electrochemical approaches focused on the detection of trinucleotide repeats (CAG, CGG, and GAA) and relied on labeling of the probe and/or target strands or enzyme-linked assays. However, detection of expanded GC-rich sequences is challenging because they are prone to forming secondary structures such as cruciforms and quadruplexes.

View Article and Find Full Text PDF

Fabrication of inexpensive and flexible electronic and electrochemical sensors is in high demand for a wide range of biochemical and biomedical applications. We explore hand fabrication of CNT modified AgNPs electrodes using wax-on-plastic platforms and their application in electrochemical immunosensing. Wax patterns were printed on polyethylene terephthalate-based substrates to laydown templates for the electrodes.

View Article and Find Full Text PDF