Publications by authors named "Moszynski R"

BACKGROUND Human Papilloma Virus (HPV)-associated Vulvar Squamous Cell Carcinomas (VSCC) present more frequently in young women than HPV- independent tumors. Due to its association with HPV infection, the incidence of vulvar cancer is increasing in young women; however, during pregnancy, it is still extremely rare. CASE REPORT We present the case of a 36-year-old pregnant woman at 23 weeks of pregnancy, diagnosed with HPV 16-associated VSCC, Federation of Gynecology and Obstetrics (FIGO) stage IB.

View Article and Find Full Text PDF

Objectives: Pregnancy is a period which is especially sensitive to physical violence and its aftermath. Subjecting a pregnant woman to violence can have negative effects on both the mother as well as the child. In Poland, there are programs, such as the Blue Card, aimed at protection against violence, however the phenomenon is underestimated.

View Article and Find Full Text PDF

We report calculations of the high-harmonic generation spectra of the C fullerene molecule carried out by employing a diverse set of real-time time-dependent quantum chemical methods. All methodologies involve expanding the propagated electronic wave function in bases consisting of the ground and singly excited time-independent eigenstates obtained through the solution of the corresponding linear-response equations. We identify the correlation and exchange effect in the spectra by comparing the results from methods relying on the Hartree-Fock reference determinant with those obtained using approaches based on the density functional theory with different exchange-correlation functionals.

View Article and Find Full Text PDF

Molecular lattice clocks enable the search for new physics, such as fifth forces or temporal variations of fundamental constants, in a manner complementary to atomic clocks. Blackbody radiation (BBR) is a major contributor to the systematic error budget of conventional atomic clocks and is notoriously difficult to characterize and control. Here, we combine infrared Stark-shift spectroscopy in a molecular lattice clock and modern quantum chemistry methods to characterize the polarizabilities of the Sr_{2} molecule from dc to infrared.

View Article and Find Full Text PDF

Ovarian cancer (OC) is one of the biggest problems in gynecological oncology and is one of the most lethal cancers in women worldwide. Most patients with OC are diagnosed at an advanced stage; therefore, there is an urgent need to find new biomarkers for this disease. Gene expression profiling is proving to be a very effective tool for exploring new molecular markers for OC patients, although the relationship between such markers and patient survival and clinical outcomes is still elusive.

View Article and Find Full Text PDF

We present a new method of calculation of the dispersion energy in the second-order symmetry-adapted perturbation theory. Using the Longuet-Higgins integral and time-independent coupled-cluster response theory, one shows that the general expression for the dispersion energy can be written in terms of cluster amplitudes and the excitation operators σ, which can be obtained by solving a linear equation. We introduced an approximate scheme dubbed CCPP2(T) for the dispersion energy accurate to the second order of intramonomer correlation, which includes certain classes to be summed to infinity.

View Article and Find Full Text PDF

: The study investigated whether the method of achieving hemostasis affects the ovarian reserve in patients undergoing laparoscopic surgery due to ovarian tumors or cysts. : Patients with unilateral tumors or ovarian cysts, who qualified for laparoscopic tumor enucleation, were randomly selected to receive modified polysaccharides or bipolar coagulation. Ovarian reserve was analyzed by anti-Mullerian hormone (AMH) level.

View Article and Find Full Text PDF

Background: Clinical outcomes of cancer cell senescence are still elusive. Here, we reveal and compare pro-cancerous activity of spontaneously and drug-inducible senescent ovarian cancer cells. Experiments were performed on tumors and tumor-derived primary epithelial ovarian cancer cells (pEOCs) that were obtained from chemotherapy-naïve patients and from patients who received carboplatin (CPT) and paclitaxel (PCT) before cytoreduction.

View Article and Find Full Text PDF

In this paper, we investigate the effects of full electronic correlation on high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. Calculations are performed within the real-time time-dependent configuration interaction framework at two levels of theory: time-dependent configuration interaction with single excitations (uncorrelated method) and time-dependent full configuration interaction (fully correlated method).

View Article and Find Full Text PDF

Visualizing molecular transformations in real-time requires a structural retrieval method with Ångström spatial and femtosecond temporal atomic resolution. Imaging of hydrogen-containing molecules additionally requires an imaging method sensitive to the atomic positions of hydrogen nuclei, with most methods possessing relatively low sensitivity to hydrogen scattering. Laser-induced electron diffraction (LIED) is a table-top technique that can image ultrafast structural changes of gas-phase polyatomic molecules with sub-Ångström and femtosecond spatiotemporal resolution together with relatively high sensitivity to hydrogen scattering.

View Article and Find Full Text PDF

Although malignant ascites (MAs) are known to contribute to various aspects of ovarian cancer progression, knowledge regarding their role in the adhesion of cancer cells to normal peritoneal cells is incomplete. Here, we compared the effect of MAs and benign ascites (BAs) on the adhesion of A2780 and OVCAR-3 cancer cells to omentum-derived peritoneal mesothelial cells (PMCs) and peritoneal fibroblasts (PFBs). The results showed that MAs stimulated the adhesion of A2780 and OVCAR-3 cells to PMCs and PFBs more efficiently than did BAs, and the strongest binding occurred when both cancer and normal cells were exposed to the fluid.

View Article and Find Full Text PDF

The mechanisms and clinical significance of the cellular senescence of tumor cells are a matter of ongoing debate. Recently, the triggers and molecular events underlying spontaneous, replicative senescence of primary epithelial ovarian cancer cells were characterized. In this study, we reanalyzed tumors obtained from ovarian cancer patients with respect to the expression of the senescence biomarkers SA-β-Gal and γ-H2A.

View Article and Find Full Text PDF

A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems.

View Article and Find Full Text PDF

The non-adiabatic electronic matrix elements, LΠΣ(R), that arise from the spin-conserving electron-rotational interactions between all mΣ+ and mΠ states, where multiplicity m = 1, 3, converging to the lowest three dissociation limits of Li-containing alkali diatomics, LiM (M = Na, K, Rb), were calculated ab initio up to large internuclear distances, R. The required electronic wavefunctions were obtained within the framework of the multi-reference configuration interaction treatment of the two-valence-electron problem constructed using small-core scalar-relativistic effective core potentials and l-independent core-polarization potentials. A least squares analysis of the ab initio functions at large internuclear distances in conjunction with long-range perturbation theory (LRPT) revealed three different asymptotic behaviors of the LΠΣ(R → +∞)-functions: const.

View Article and Find Full Text PDF

Optical trapping of molecules with long coherence times is crucial for many protocols in quantum information and metrology. However, the factors that limit the lifetimes of the trapped molecules remain elusive and require improved understanding of the underlying molecular structure. Here we show that measurements of vibronic line strengths in weakly and deeply bound ^{88}Sr_{2} molecules, combined with ab initio calculations, allow for unambiguous identification of vibrational quantum numbers.

View Article and Find Full Text PDF

Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo.

View Article and Find Full Text PDF

Objectives: The study's main aim was to evaluate the relationship between the performance of predictive models for differential diagnoses of ovarian tumors and levels of diagnostic confidence in subjective assessment (SA) with ultrasound. The second aim was to identify the parameters that differentiate between malignant and benign tumors among tumors initially diagnosed as uncertain by SA.

Methods: The study included 250 (55%) benign ovarian masses and 201 (45%) malignant tumors.

View Article and Find Full Text PDF

Approximately, 5% of ovarian tumors have hormonal activity. Steroid cell tumors (SCTs) represent about 0.1% of all ovarian tumors.

View Article and Find Full Text PDF

Observing changes in molecular structure requires atomic-scale Ångstrom and femtosecond spatio-temporal resolution. We use the Fourier transform (FT) variant of laser-induced electron diffraction (LIED), FT-LIED, to directly retrieve the molecular structure of HO with picometer and femtosecond resolution without a priori knowledge of the molecular structure nor the use of retrieval algorithms or ab initio calculations. We identify a symmetrically stretched HO field-dressed structure that is most likely in the ground electronic state.

View Article and Find Full Text PDF

This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA).

View Article and Find Full Text PDF

Mechanisms of transmesothelial invasion of ovarian cancer are still poorly understood. Here we examined whether this phenomenon may be determined by an expression of intercellular junctions in peritoneal mesothelial cells (PMCs). Analysis of ovarian tumors showed that cancer cells are localized below an intact layer of PMCs.

View Article and Find Full Text PDF

Objectives: The main aim of the study was to investigate the expression of Platelet-Derived Growth Factor Receptors alpha (PDGFR-alpha) and beta (PDGFR-beta) in malignant and benign ovarian tumors. We performed an analysis of the correlation of PDGFRs expression and stage of the disease, tumor grade and histopathological type of epithelial ovarian cancer (EOC). Additionally, we evaluated patient prognosis according to PDGFR expression.

View Article and Find Full Text PDF

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement.

View Article and Find Full Text PDF