Publications by authors named "Mostovoy M"

Randomly distributed topological defects created during the spontaneous symmetry breaking are the fingerprints to trace the evolution of symmetry, range of interaction, and order parameters in condensed matter systems. However, the effective mean to manipulate topological defects into ordered form is elusive due to the topological protection. Here, we establish a strategy to effectively align the topological domain networks in hexagonal manganites through a mechanical approach.

View Article and Find Full Text PDF

Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes.

View Article and Find Full Text PDF

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric CuOSeO.

View Article and Find Full Text PDF

The manipulation of magnetism through strain control is a captivating area of research with potential applications for low-power devices that do not require dissipative currents. Recent investigations of insulating multiferroics have unveiled tunable relationships among polar lattice distortions, Dzyaloshinskii-Moriya interactions (DMI), and cycloidal spin orders that break inversion symmetry. These findings have raised the possibility of utilizing strain or strain gradient to manipulate intricate magnetic states by changing polarization.

View Article and Find Full Text PDF

Electric control of magnetism and magnetic control of ferroelectricity can improve the energy efficiency of magnetic memory and data-processing devices. However, the necessary magnetoelectric switching is hard to achieve, and requires more than just a coupling between the spin and the charge degrees of freedom. Here we show that an application and subsequent removal of a magnetic field reverses the electric polarization of the multiferroic GdMnO, thus requiring two cycles to bring the system back to the original configuration.

View Article and Find Full Text PDF

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality.

View Article and Find Full Text PDF

The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior.

View Article and Find Full Text PDF

We study the absorption spectra of the yellow excitons in CuO in high magnetic fields using polarization-resolved optical absorption measurements with a high frequency resolution. We show that the symmetry of the yellow exciton results in unusual selection rules for the optical absorption of polarized light and that the mixing of ortho- and para- excitons in magnetic field is important. The calculation of the energies of the yellow exciton series in strong and weak magnetic field limits suggests that a broad n = 2 line is comprized by two closely overlapping lines, gives a good fit to experimental data and allows to interpret the complex structure of excitonic levels.

View Article and Find Full Text PDF

We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu_{2}OSeO_{3} at the temperature T=5  K. Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2  GHz≤f≤20  GHz with low magnetic damping α≤0.003.

View Article and Find Full Text PDF

We study topological defects in anisotropic ferromagnets with competing interactions near the Lifshitz point. We show that Skyrmions and bimerons are stable in a large part of the phase diagram. We calculate Skyrmion-Skyrmion and meron-meron interactions and show that Skyrmions attract each other and form ring-shaped bound states in a zero magnetic field.

View Article and Find Full Text PDF

Magnetic skyrmions are particle-like topological excitations recently discovered in chiral magnets. Their small size, topological protection and the ease with which they can be manipulated by electric currents generated much interest in using skyrmions for information storage and processing. Recently, it was suggested that skyrmions with additional degrees of freedom can exist in magnetically frustrated materials.

View Article and Find Full Text PDF

The double-exchange model describing interactions of itinerant electrons with localized spins is usually used to explain ferromagnetism in metals. We show that for a variety of crystal lattices of different dimensionalities and for a wide range of model parameters, the ferromagnetic state is unstable against a noncollinear spiral magnetic order. We revisit the phase diagram of the double-exchange model on a triangular lattice and show in a large part of the diagram the incommensurate spiral state has a lower energy than the previously discussed commensurate states.

View Article and Find Full Text PDF

Multiply periodic states appear in a wide variety of physical contexts, such as the Rayleigh-Bénard convection, Faraday waves, liquid crystals and skyrmion crystals recently observed in chiral magnets. Here we study the phase diagram of an anisotropic frustrated magnet which contains five different multiply periodic states including the skyrmion crystal. We clarify the mechanism for stabilization of these states and discuss how they can be observed in magnetic resonance and electric polarization measurements.

View Article and Find Full Text PDF

Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets, ferroelectrics and superconductors. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities.

View Article and Find Full Text PDF

Multiferroic hexagonal RMnO(3) (R=rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state.

View Article and Find Full Text PDF

Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion--a particle-like object in which spins point in all directions to wrap a sphere--constitutes such a ratchet.

View Article and Find Full Text PDF

The coupling between the magnetic and electric dipoles in multiferroic and magnetoelectric materials holds promise for conceptually novel electronic devices. This calls for the development of local probes of the magnetoelectric response, which is strongly affected by defects in magnetic and ferroelectric ground states. For example, multiferroic hexagonal rare earth manganites exhibit a dense network of boundaries between six degenerate states of their crystal lattice, which are locked to both ferroelectric and magnetic domain walls.

View Article and Find Full Text PDF

Topological defects in ordered states with spontaneously broken symmetry often have unusual physical properties, such as fractional electric charge or a quantized magnetic field flux, originating from their non-trivial topology. Coupled topological defects in systems with several coexisting orders give rise to unconventional functionalities, such as the electric-field control of magnetization in multiferroics resulting from the coupling between the ferroelectric and ferromagnetic domain walls. Hexagonal manganites provide an extra degree of freedom: in these materials, both ferroelectricity and magnetism are coupled to an additional, non-ferroelectric structural order parameter.

View Article and Find Full Text PDF

We use symmetry analysis and first-principles calculations to show that the linear magnetoelectric effect can originate from the response of orbital magnetic moments to the polar distortions induced by an applied electric field. Using LiFePO(4) as a model compound we show that spin-orbit coupling partially lifts the quenching of the 3d orbitals and causes small orbital magnetic moments (μ((L)) ≈ 0.3 μ(B)) parallel to the spins of the Fe(2+) ions.

View Article and Find Full Text PDF

The random fluctuations of spins give rise to many interesting physical phenomena, such as the 'order-from-disorder' arising in frustrated magnets and unconventional Cooper pairing in magnetic superconductors. Here we show that the exchange of spin waves between extended topological defects, such as domain walls, can result in novel magnetic states. We report the discovery of an unusual incommensurate phase in the orthoferrite TbFeO(3) using neutron diffraction under an applied magnetic field.

View Article and Find Full Text PDF

It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets.

View Article and Find Full Text PDF

Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena, such as insulator-metal transitions, magnetism, magnetoresistance and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high-quality, epitaxial interfaces with almost monolayer control of atomic positions.

View Article and Find Full Text PDF

We study the collective dynamics of the Skyrmion crystal in thin films of ferromagnetic metals resulting from the nontrivial Skyrmion topology. It is shown that the current-driven motion of the crystal reduces the topological Hall effect and the Skyrmion trajectories bend away from the direction of the electric current (the Skyrmion Hall effect). We find a new dissipation mechanism in noncollinear spin textures that can lead to a much faster spin relaxation than Gilbert damping, calculate the dispersion of phonons in the Skyrmion crystal, and discuss the effects of impurity pinning of Skyrmions.

View Article and Find Full Text PDF

We studied magnetic excitations in a low-temperature ferroelectric phase of the multiferroic YMn(2)O(5) using inelastic neutron scattering (INS). We identify low-energy magnon modes and establish a correspondence between the magnon peaks observed by INS and electromagnon peaks observed in optical absorption [A. B.

View Article and Find Full Text PDF

The interaction between the electric field E and spins in multiorbital Mott insulators is studied theoretically. We find a generic coupling mechanism, which works for all crystal lattices and which does not involve relativistic effects. It couples E to the "internal" electric field e originating from the dynamical Berry phase.

View Article and Find Full Text PDF