ACS Appl Mater Interfaces
January 2023
Carbon nanotube (CNT) yarns are promising for wearable electronic applications due to their excellent electromechanical and thermal properties and structural flexibility. A spinning system was customized to produce CNT-wrapped textile yarns for wearable applications. By adjusting the spinning parameters and core yarn, a highly tailored hybrid CNT yarn could be produced for textile processing, e.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are known for their excellent conductive properties. Here, we present two novel methods, "sandwich" (sCNT) and dual deposition (DD CNT), for incorporating CNTs into electrospun polycaprolactone (PCL) and gelatin scaffolds to increase their conductance. Based on CNT percentage, the DD CNT scaffolds contain significantly higher quantities of CNTs than the sCNT scaffolds.
View Article and Find Full Text PDFThis research work blooms the new idea of developing a safe and controlled drug releasing matrix using multi-walled carbon nanotubes (MWCNTs). In aqueous solution, uniform and highly stable dispersion of MWCNTs was obtained after secondary functionalization with polyethylene glycol (PEG) which was studied by Fourier transmission infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Solution casting method was used to prepare MWCNTs/gelatin-chitosan nanocomposite films and the effect of MWCNTs on physico-mechanical, thermal and water uptake properties of the nanocomposites were evaluated.
View Article and Find Full Text PDF