Publications by authors named "Mostafa Taoufik"

Tungsten-modified CeO is an excellent catalyst for the catalytic conversion of ammonia. However, the geometric and electronic properties of this catalyst and the detailed reaction mechanisms are not well understood. In this work, the potential configurations of various monomer tungsten oxides supported on the CeO(111) surface (WO(x = 0-4)/CeO(111)) are systematically studied and their relative stabilities are evaluated by using on-site Coulomb interaction corrected density functional theory calculations.

View Article and Find Full Text PDF

Exploring the surface organometallic chemistry on silica of highly electrophilic yttrium complexes is a relatively uncommon endeavor, particularly when focusing on tris-alkyl complexes characterized by Y-C σ-alkyl bonds. A drawback with this class of complexes once grafted on silica, is the frequent occurrence of alkyl transfer by ring opening of siloxane groups, resulting in a mixture of species. Herein, we employed a more stable homoleptic yttrium allyl complex bearing bulky η-1,3-bis(trimethylsilyl)allyl ligand to limit this transfer reaction.

View Article and Find Full Text PDF

Aluminas are strategic materials used in many major industrial processes, either as catalyst supports or as catalysts in their own right. The transition alumina γ-Al O is a privileged support, whose reactivity can be tuned by thermal activation. This study provides a qualitative and quantitative assessment of the hydroxyl groups present on the surface of γ-Al O at three different dehydroxylation temperatures.

View Article and Find Full Text PDF

The measurement of dipolar and J- couplings between Si and O isotopes is challenging owing to (i) the low abundance of both isotopes and (ii) their close Larmor frequencies, which only differ by 19%. These issues are circumvented here by the use of isotopic enrichment and dedicated triple-resonance magic-angle spinning NMR probe. The surface of Si-enriched silica was labelled with O isotope and heated at 80 and 200 °C.

View Article and Find Full Text PDF

We report here the first step by step anchoring of a W(≡CBu)(CHBu) complex on a highly crystalline and mesoporous MOF, namely Zr-NU-1000, using a Surface Organometallic Chemistry (SOMC) concept and methodology. SOMC allowed us to selectively graft the complex on the Zr clusters and characterize the obtained single site material using state of the art experimental methods including extensive solid-state NMR techniques and HAADF-STEM imaging. Further FT-IR spectroscopy revealed the presence of a W═O moiety arising from the in situ reaction of the W≡CBu functionality with the coordinated water coming from the 8-connected hexanuclear Zr clusters.

View Article and Find Full Text PDF

Inorganic oxides play a crucial role in the activation of atomically dispersed metal oxides for catalytic olefin transformations, but the inefficient activation processes remain poorly understood. Activation of methyltrioxorhenium (MTO) for propene metathesis via its deposition on the surface of γ-AlO typically results in <5% active sites, and these sites deactivate rapidly. Simple substitution of the support by a less crystalline (largely amorphous) alumina ( a-AlO) results in ca.

View Article and Find Full Text PDF

Parahydrogen can be used in catalytic hydrogenations to achieve substantial enhancement of NMR signals of the reaction products and in some cases of the reaction reagents as well. The corresponding nuclear spin hyperpolarization technique, known as parahydrogen-induced polarization (PHIP), has been applied to boost the sensitivity of NMR spectroscopy and magnetic resonance imaging by several orders of magnitude. The catalyst properties are of paramount importance for PHIP because the addition of parahydrogen to a substrate must be pairwise.

View Article and Find Full Text PDF

A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)Mo([double bond, length as m-dash]O)(CHBu), was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CHBu)Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO/SiO olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

View Article and Find Full Text PDF

This paper reports the principal discoveries which have played a major role in the polyolefin field and have positioned polyolefins as the most produced plastics. The early development of polyolefins covering the production of LDPE (Low density polyethylene) at ICI (Imperial Chemical Industries) and the discovery of Phillips or Ziegler-Natta catalysts are highlighted in the first section. In the second part, the impact of the implementation of molecular catalysts on the research in polyolefins is discussed together with the most recent advances leading to high-performance tailor-made resins.

View Article and Find Full Text PDF

The well-defined silica-supported molybdenum oxo alkyl species (≡SiO-)MoO(CHBu) was selectively prepared by grafting of MoO(CHBu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts.

View Article and Find Full Text PDF

Ring opening metathesis polymerization (ROMP) of bicyclo[2.2.1]hept-2-ene (norbornene) is carried out over silica-supported catalysts based on tungsten complexes bearing an oxo ligand (1: [(SiO)W(O)(CH SiMe ) , 2: [(SiO)W(O)(CHCMe Ph)(dAdPO)], dAdPO  2,6 diadamantyl-4-methylphenoxide, 3: [(SiO) W(O)(CH SiMe ) ]).

View Article and Find Full Text PDF

Extensive chlorination of γ-AlO results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support.

View Article and Find Full Text PDF

A new class of well-defined activating supports for olefin polymerization was obtained via the surface organometallic chemistry approach. High activities in slurry polymerization of ethylene along with industrial-grade physical properties of the resulting polyethylene were obtained when these activators were combined with metallocene complexes in the presence of triisobutylaluminium.

View Article and Find Full Text PDF

Hydrazine reacts with silica-supported tantalum-hydrides [(≡SiO)2TaHx] (x = 1, 3), 1, under mild conditions (100 °C). The IR in situ monitoring of the reaction with N2H4 or (15)N2H4, and the solid-state MAS NMR spectra of the fully (15)N labeled compounds (CP (15)N, (1)H-(15)N HETCOR, (1)H-(1)H double-quantum, and (1)H-(1)H triple-quantum spectra) were used to identify stable intermediates and products. DFT calculations were used for determining the reaction pathway and calculating the (15)N and (1)H NMR chemical shifts.

View Article and Find Full Text PDF

Chlorine ligands in a variety of diamagnetic transition-metal (TM) complexes in common structural motifs were studied using (35)Cl solid-state NMR (SSNMR), and insight into the origin of the observed (35)Cl NMR parameters was gained through first-principles density functional theory (DFT) calculations. The WURST-CPMG pulse sequence and the variable-offset cumulative spectrum (VOCS) methods were used to acquire static (35)Cl SSNMR powder patterns at both standard (9.4 T) and ultrahigh (21.

View Article and Find Full Text PDF

The surface hydroxyl groups of γ-alumina dehydroxylated at 500 °C were studied by a combination of one- and two-dimensional homo- and heteronuclear (1)H and (27)Al NMR spectroscopy at high magnetic field. In particular, by harnessing (1)H-(27) Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the (1)H magic-angle spinning (MAS) NMR spectrum was demonstrated thanks to (1)H-(27) Al RESPDOR (resonance-echo saturation-pulse double-resonance).

View Article and Find Full Text PDF

Olefin metathesis is increasingly incorporated in polyfunctional industrial processes. The classical WO3/SiO2 olefin metathesis catalyst is combined to other catalysts in order to afford higher added-value chemicals. However, the combination of several reactions, not only in a single reactor, but also stemming from a single, multifunctional surface species is a desirable improvement regarding process issues.

View Article and Find Full Text PDF

The grafting of an oxo chloro trisalkyl tungsten derivative on silica dehydroxylated at 700 °C was studied by several techniques that showed reaction via W-Cl cleavage, to afford a well-defined precatalyst for alkene metathesis. This was further confirmed by DFT calculations on the grafting process. (17)O labeling of the oxo moiety of a series of related molecular and supported tungsten oxo derivatives was achieved, and the corresponding (17)O MAS NMR spectra were recorded.

View Article and Find Full Text PDF

A series of transition-metal organometallic complexes with commonly occurring metal-chlorine bonding motifs were characterized using (35)Cl solid-state NMR (SSNMR) spectroscopy, (35)Cl nuclear quadrupole resonance (NQR) spectroscopy, and first-principles density functional theory (DFT) calculations of NMR interaction tensors. Static (35)Cl ultra-wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.

View Article and Find Full Text PDF

Homoleptic benzyl derivatives of titanium and zirconium have been grafted onto silica that was dehydroxylated at 200 and 700 °C, thereby affording bi-grafted and mono-grafted single-site species, respectively, as shown by a combination of experimental techniques (IR, MAS NMR, EXAFS, and elemental analysis) and theoretical calculations. Marked differences between these compounds and their neopentyl analogues are discussed and rationalized by using DFT. These differences were assigned to the selectivity of the grafting process, which, depending on the structure of the molecular precursors, led to different outcomes in terms of the mono- versus bi-grafted species for the same surface concentration of silanol species.

View Article and Find Full Text PDF

DFT(B3PW91) calculations have been carried out to propose a pathway for the N(2) cleavage by H(2) in the presence of silica-supported tantalum hydride complexes [(≡SiO)(2)TaH(x)] that forms [(≡SiO)(2)Ta(NH)(NH(2))] (Science 2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)(2)SiO](2)}TaH(1) and {μ-O[(HO)(2)SiO](2)}TaH(3), labelled as (≡SiO)(2)TaH(x) (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)(2)TaH(η(2)-N(2)) and (≡SiO)(2)TaH(η(2)-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands.

View Article and Find Full Text PDF

Flame silica was surface-labeled with (17)O, through isotopic enrichment of both siloxanes and silanols. After heat treatment at 200 and 700 °C under vacuum, the resulting partially dehydroxylated silica materials were investigated by high-field solid-state (1)H and (17)O NMR. More specifically, MQ MAS and HMQC sequences were used to probe the (17)O local environment.

View Article and Find Full Text PDF

The first example of propylene production from 2-butene in promising yield is described by reacting trans-2-butene over tungsten hydrides precursor W-H/Al(2)O(3) at 150 °C and different pressures in a continuous flow reactor. The tungsten carbene-hydride active site operates as a "bi-functional catalyst" through the disfavoured 2-butene isomerisation on W-hydride and 2-butenes/1-butene cross-metathesis on W-carbene.

View Article and Find Full Text PDF

Silica-supported titanium(IV) chloride is readily reduced by Mashima and co-workers' reagent (1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene) to afford materials active in ethylene polymerisation without need of aluminum alkyl cocatalyst.

View Article and Find Full Text PDF