Cell-based therapy and tissue engineering are promising substitutes for liver transplantation to cure end-stage liver disorders. However, the limited sources for healthy and functional cells and poor engraftment rate are main challenges to the cell-based therapy approach. On the other hand, feasibility of production and size of bioengineered tissues are primary bottlenecks in tissue engineering.
View Article and Find Full Text PDFStem cells have an important role in regenerative therapies, developmental biology studies and drug screening. Basic and translational research in stem cell technology needs more detailed imaging techniques. The possibility of cell-based therapeutic strategies has been validated in the stem cell field over recent years, a more detailed characterization of the properties of stem cells is needed for connectomics of large assemblies and structural analyses of these cells.
View Article and Find Full Text PDFNaïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts.
View Article and Find Full Text PDFBiomedical application of human pluripotent stem cell-derived hepatocyte-like cells (hPSC-HLCs) relies on efficient large-scale differentiation, which is commonly performed by a suspension culture of three-dimensional (3D) multicellular spheroids in bioreactors. However, this approach requires large amounts of growth factors (GFs) and the need to overcome limited diffusional transport posed by the inherent 3D structure of hPSC spheroids. Here, we have hypothesized that localized delivery of GFs by incorporation of GF-laden degradable polymeric microparticles (MPs) within the hPSC spheroids would circumvent such limitations.
View Article and Find Full Text PDFDynamic suspension culture of human pluripotent stem cells (hPSCs) in stirred bioreactors provides a valuable scalable culture platform for integrated differentiation toward different lineages for potential research and therapeutic applications. However, current protocols for scalable and integrated differentiation of hPSCs limited due to high cost of growth factors and technical challenges. Here, hPSCs aggregates primed with 6 and 12 μM of CHIR99021 (CHIR), a Wnt agonist, in combination with different concentrations of high cost Activin A (10, 25, 50, 100 ng/mL).
View Article and Find Full Text PDFA major hindrance in islet transplantation as a feasible therapeutic approach for patients with type 1 diabetes is the insufficient oxygenation of the grafts, which results in cell death in portions of the implant. Here we address this limitation through the application of oxygen-generating microparticles (MP) and a fibrin-conjugated heparin/VEGF collagen scaffold to support cell survival by using a β cell line and pancreatic rat islets. MP are composed of a polyvinylpyrrolidone/hydrogen peroxide (PVP/H2O2) core and poly(D,L-lactide-co-glycolide) (PLGA) shell, along with immobilized catalase on the shell.
View Article and Find Full Text PDFBackground Aims: Chronic kidney disease (CKD) attributed to cisplatin is well documented. Mesenchymal stromal cells (MSCs) are proven to be renotropic. Although they have been shown to improve function in CKD and reduce fibrosis in different experimental rodent models, their efficiency in primates is unknown.
View Article and Find Full Text PDFCytotherapy
June 2014
Background: Clinically, acute kidney injury (AKI) is a potentially devastating condition for which no specific therapy improves efficacy of the repair process. Bone marrow mesenchymal stromal cells (BM-MSCs) are proven to be beneficial for the renal repair process after AKI in different experimental rodent models, but their efficacy in large animals and humans remains unknown. This study aims to assess the effect of autologous rhesus Macaque mulatta monkey BM-MSC transplantation in cisplatin-induced AKI.
View Article and Find Full Text PDFDue to their important biomedical applications, functional human embryonic stem cell-derived hepatocyte-like cells (hESC-HLCs) are an attractive topic in the field of stem cell differentiation. Here, we have initially differentiated hESCs into functional hepatic endoderm (HE) and continued the differentiation by replating them onto galactosylated collagen (GC) and collagen matrices. The differentiation of hESC-HE cells into HLCs on GC substrate showed significant up-regulation of hepatic-specific genes such as ALB, HNF4α, CYP3A4, G6P, and ASGR1.
View Article and Find Full Text PDF