This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.
View Article and Find Full Text PDFJ Environ Manage
October 2018
By finding appropriate recycling approaches, the volume of wastes, corresponding disposal cost, and the pollution of environment could be diminished. Also, such promising approaches can result in the conservation of natural sources and economic benefits. Aluminum dross as a hazardous solid waste in aluminum production industries has caused serious environmental and public health challenges.
View Article and Find Full Text PDFThe numerous ecological problems caused by the accumulation of secondary aluminum dross (SAD) as a hazardous waste generated in aluminum castings have necessitated a need for a sustainable recycling solution. This study proposes a novel and green leaching-based process for recovery of nano-alumina as a highly valuable material from SAD. The leaching phase was performed at atmospheric pressure and low temperature.
View Article and Find Full Text PDF