Publications by authors named "Mostafa Habibi"

Hafnia thin films are known to demonstrate excellent performance with strong ferroelectricity and high scalability, making them promising candidates for CMOS-compatible materials. However, the reliability of ferroelectric devices must be further improved. This study developed a HfZrO ferroelectric capacitor with a nanolaminate structure that operated at remarkably low voltages, demonstrating excellent retention (>10 years/85 °C) and endurance (>10 cycles).

View Article and Find Full Text PDF

Despite abundant theoretical investigations on the dynamic behavior of functionally graded (FG) structures, the study on frequency analysis of FG bio-composite structures is limited. FG bio-composite materials due to their biocompatibility potentials and good material properties can be applied in biomedical applications, especially dental implants. In this investigation, a natural frequency response of the FG bio-composite plate is analyzed within the framework of the newly developed refined higher-order shear deformation plate theory.

View Article and Find Full Text PDF

In the present study, we aimed to quantify the effects of COVID-19 restrictions and speech treatment approaches during lockdowns on autistic children using CBCL and neuro-fuzzy artificial intelligence method. In this regard, a survey including CBCL questionnaire is prepared using online forms. In total, 87 children with diagnosed Autism spectrum disorders (ASD) participated in the survey.

View Article and Find Full Text PDF

As the most rigid cytoskeletal filaments, tubulin-labeled microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. The current structure is often under several environmental conditions as well as various dynamic or static loads that can decrease the stability of the viscoelastic tubulin-labeled microtubules. For this issue, the dynamic stability analysis of size-dependent viscoelastic tubulin-labeled microtubules using modified strain gradient theory by considering the exact three-length scale parameter.

View Article and Find Full Text PDF

In this article, size-dependent vibrations and the stability of moving viscoelastic axially functionally graded (AFG) nanobeams were investigated numerically and analytically, aiming at the stability enhancement of translating nanosystems. Additionally, a parametric investigation is presented to elucidate the influence of various key factors such as axial gradation of the material, viscosity coefficient, and nonlocal parameter on the stability boundaries of the system. Material characteristics of the system vary smoothly along the axial direction based on a power-law distribution function.

View Article and Find Full Text PDF

Over the last few years, some novel researches in the field of medical science made a tendency to have a therapy without any complications or side-effects of the disease with the aid of prognosis about the behaviors of the substructure living biological cell. Regarding this issue, nonlinear frequency characteristics of substructure living biological cell in axons with attention to different size effect parameters based on generalized differential quadrature method is presented. Supporting the effects of surrounding cytoplasm and MAP Tau proteins are considered as nonlinear elastic foundation.

View Article and Find Full Text PDF

This study presents the frequency analysis of a size-dependent laminated polymer composite microtube using a nonlocal strain-stress gradient (NSG) model. By applying energy methods (known as Hamilton's principle), the motion equations of the laminated micro tube composites are developed. The thermodynamic equations of the laminated microtube are based on first-order shear deformation theory (FSDT), and a generalized differential quadrature method (GDQM) is employed to find the model for the natural frequencies.

View Article and Find Full Text PDF

Background: Gold nanoparticles now command a great deal of attention for medical applications. Despite the importance of nano-bio interfaces, interaction between peptides and proteins with gold surfaces is not still fully understood, especially in a molecular level.

Methods: In the present study computational simulation of adsorption of 20 amino acids, in three forms of mono-amino acid, homo di-peptide and homo tri-peptide, on the gold nanoparticles was performed by Gromacs using OPLSAA force field.

View Article and Find Full Text PDF

Quantum chemical calculations have been performed to gauge the effect of pi-stacking and hydrogen bonding interactions on each other in X-ben//pyr...

View Article and Find Full Text PDF