Earlier protection methods mainly focused on using communication channels to transmit trip signals between the protective devices (PDs), with no solutions provided in the case of communication failure. Therefore, this paper introduces a dual-layer protection system to ensure secure protection against fault events in the Distribution Systems (DSs), particularly in light of communication failures. The initial layer uses the Total Harmonic Distortion (THD), the estimates of the amplitude voltages, and the zero-sequence grid voltage components, functioning as a fault sensor, to formulate an adaptive algorithm based on a Finite State Machine (FSM) for the detection and isolation of faults within the grid.
View Article and Find Full Text PDFThe rapid growth of the distributed generators (DGs) integration into the distribution systems (DSs) creates new technical issues; conventional relay settings need to be updated depending on the network topology and operational mode as fault protection a major challenge. This emphasizes the need for new fault protection methods to ensure secure protection and prevent undesirable tripping. Total harmonic distortion (THD) is an important indicator for assessing the quality of the grid.
View Article and Find Full Text PDF