Recently, deep reinforcement learning techniques have achieved tangible results for learning high dimensional control tasks. Due to the trial and error interaction, between the autonomous agent and the environment, the learning phase is unconstrained and limited to the simulator. Such exploration has an additional drawback of consuming unnecessary samples at the beginning of the learning process.
View Article and Find Full Text PDFAC corrosion represents a chronic issue that is faced by the buried metallic pipelines that are neighboring by the high voltage overhead transmission lines (HVOHTLs). In this paper a potassium hydroxide polarization cell (KOH-PC) is employed on the pipeline to mitigate the generated voltage from the power lines' intrusion with the buried pipeline. This work further investigates an integrated system to exploit the discharged energy for compensating the cathodic protection disturbances where a portion of this energy may be converted to DC form and reapplied on the pipeline as a cathodic protection voltage.
View Article and Find Full Text PDFNonlinear dynamics are ubiquitous in complex systems. Their applications range from robotics to computational neuroscience. In this work, the Koopman framework for globally linearizing nonlinear dynamics is introduced.
View Article and Find Full Text PDFThe problem of AC corrosion remains motivating for researchers because many factors influence the corrosion rate for buried pipelines due to the interference with overhead high voltage transmission lines (OHVTLs). Many researchers study the mechanisms of induced alternating current (AC) voltages, which are summarized as capacitive, inductive, and conductive coupling. In this work, only the induced AC voltage on the pipelines due to inductive coupling in steady-state conditions is studied.
View Article and Find Full Text PDF