Objectives: To evaluate the linkage between age and deficits in innate and adaptive immunity which heralds both Alzheimer's disease (AD) onset and progression. The pathobiological events which underlie and tie these outcomes remain not fully understood.
Methods: To investigate age-dependent immunity in AD, we evaluated innate and adaptive immunity in coordinate studies of regulatory T cell (Treg) function, T cell frequencies, and microglial integrity.
Synucleinopathies are a group of neurodegenerative disorders characterized by pathologic aggregates of neural and glial α-synuclein (α-syn) in the form of Lewy bodies (LBs), Lewy neurites, and cytoplasmic inclusions in both neurons and glia. Two major classes of synucleinopathies are LB disease and multiple system atrophy. LB diseases include Parkinson's disease (PD), PD with dementia, and dementia with LBs.
View Article and Find Full Text PDFTreatment of HIV-1-infected CD34+ NSG-humanized mice with long-acting ester prodrugs of cabotegravir, lamivudine, and abacavir in combination with native rilpivirine was followed by dual CRISPR-Cas9 C-C chemokine receptor type five (CCR5) and HIV-1 proviral DNA gene editing. This led to sequential viral suppression, restoration of absolute human CD4 T cell numbers, then elimination of replication-competent virus in 58% of infected mice. Dual CRISPR therapies enabled the excision of integrated proviral DNA in infected human cells contained within live infected animals.
View Article and Find Full Text PDFResearch of nanoscale nucleic acid carriers has garnered attention in recent years due to their distinctive and controllable properties. However, current knowledge is limited in how we can efficiently utilize these systems for clinical applications. Several researchers have pioneered new and innovative nanocarrier drug delivery systems, but understanding physiochemical properties and behavior is vital to implementing them as clinical drug delivery platforms.
View Article and Find Full Text PDFClin Exp Immunol
March 2023
NeuroImmune Pharm Ther
March 2022
To compare a novel, sustained release formulation and a bolus injection of a targeted nanocarrier for the ability to specifically deplete cells responsible for the development of posterior capsule opacification (PCO) in week-long, dynamic cell cultures. A novel, injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer hydrogel was engineered for the sustained release of targeted, nucleic acid nanocarriers loaded with cytotoxic doxorubicin (G8:3DNA:Dox). Human rhabdomyosarcoma (RD) cells were used due to their expression of brain-specific angiogenesis inhibitor 1 (BAI1), a specific marker for the myofibroblasts responsible for PCO.
View Article and Find Full Text PDFProdrugs are bioreversible drug derivatives which are metabolized into a pharmacologically active drug following chemical or enzymatic modification. This approach is designed to overcome several obstacles that are faced by the parent drug in physiological conditions that include rapid drug metabolism, poor solubility, permeability, and suboptimal pharmacokinetic and pharmacodynamic profiles. These suboptimal physicochemical features can lead to rapid drug elimination, systemic toxicities, and limited drug-targeting to disease-affected tissue.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aβ) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration.
View Article and Find Full Text PDFNucleic acids are versatile materials capable of forming smart nanocarriers with highly controllable therapeutic delivery. DNA-gated release is a mechanism by which DNA oligonucleotides physically block the release of encapsulated drugs from porous nanoparticles. We extend this mechanism to be used with drugs bound to the surface of DNA-capped gold nanoparticles (AuNPs).
View Article and Find Full Text PDFBackground: A barrier to HIV-1 cure rests in the persistence of proviral DNA in infected CD4+ leukocytes. The high HIV-1 mutation rate leads to viral diversity, immune evasion, and consequent antiretroviral drug resistance. While CRISPR-spCas9 can eliminate latent proviral DNA, its efficacy is limited by HIV strain diversity and precision target cell delivery.
View Article and Find Full Text PDFSince the seminal work of Wichterle in 1965 describing the first soft contact lenses and their potential for ocular drug delivery, the field has yet to realize his vision. Maintaining all lens commercial properties combined with a mechanism for controlled drug release of therapeutically relevant concentrations for duration of wear is a major challenge. Here, successful in vivo week-long sustained release of a small molecular weight therapeutic in rabbits from extended-wear silicone hydrogel contact lenses meeting all commercial specifications by utilizing a novel macromolecular memory strategy is reported for the first time.
View Article and Find Full Text PDFInfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person.
View Article and Find Full Text PDFThe novel and unique design of self-assembled micro and nanostructures can be tailored and controlled through the deep understanding of the self-assembly behavior of amphiphilic molecules. The most commonly known amphiphilic molecules are surfactants, phospholipids, and block copolymers. These molecules present a dual attraction in aqueous solutions that lead to the formation of structures like micelles, hydrogels, and liposomes.
View Article and Find Full Text PDFWe have developed a novel, nanosized drug carrier with high-therapeutic payload, controllable release, and the potential for active tumor targeting. It consists of a 15 nm gold nanoparticle with dense surface loading of DNA duplexes. We utilize the natural intercalating behavior of daunomycin to load the drug between DNA base pairs.
View Article and Find Full Text PDF