Publications by authors named "Moskau D"

We present a new method for rapid NMR data acquisition and assignments applicable to unlabeled ((12)C) or (13)C-labeled biomolecules/organic molecules in general and metabolomics in particular. The method involves the acquisition of three two dimensional (2D) NMR spectra simultaneously using a dual receiver system. The three spectra, namely: (1) G-matrix Fourier transform (GFT) (3,2)D [(13)C, (1)H] HSQC-TOCSY, (2) 2D (1)H-(1)H TOCSY and (3) 2D (13)C-(1)H HETCOR are acquired in a single experiment and provide mutually complementary information to completely assign individual metabolites in a mixture.

View Article and Find Full Text PDF

Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR.

View Article and Find Full Text PDF

Long-range (1)H-(15)N heteronuclear shift correlation experiments at natural abundance are becoming more routinely utilized in the characterization of unknown chemical structures from a diverse range of sources including natural products and pharmaceuticals. Apart from the inherent challenges of the low gyromagnetic ratio and natural abundance of (15)N, investigators are also occasionally hampered by having to deal with the wide spectral range inherent to various nitrogen functional groups, which can exceed 500 ppm. Earlier triple resonance cryoprobe designs typically provided 90° (15)N pulses in the range of 35-40 µs, which did not allow the uniform excitation of wide F(1) spectral ranges for (1)H-(15)N GHMBC spectra.

View Article and Find Full Text PDF

Pulsed Field Gradients (PFGs) have become ubiquitous tools not only for Magnetic Resonance Imaging (MRI), but also for NMR experiments designed to study translational diffusion, for spatial encoding in ultra-fast spectroscopy, for the selection of desirable coherence transfer pathways, for the suppression of solvent signals, and for the elimination of zero-quantum coherences. Some of these experiments can only be carried out if three orthogonal gradients are available, while others can also be implemented using a single gradient, albeit at some expense of performance. This paper discusses some of the advantages of triple- with respect to single-gradient probes.

View Article and Find Full Text PDF

Different decoupling sequences are tested-using various shaped radio-frequency (RF) pulses-to achieve the longest possible lifetimes of singlet-state populations over the widest possible bandwidths, that is, ranges of offsets and relative chemical shifts of the nuclei involved in the singlet states. The use of sinc or refocusing broadband universal rotation pulses (RE-BURP) for decoupling during the intervals where singlet-state populations are preserved allows one to extend the useful bandwidth with respect to prior state-of-the-art methods based on composite-pulse WALTZ decoupling. The improved sinc decoupling sequences afford a more reliable and sensitive measure of the lifetimes of singlet states in pairs of spins that have widely different chemical shifts, such as the two aromatic protons H(5) and H(6) in uracil.

View Article and Find Full Text PDF

The biosynthesis of knipholone, as an axially chiral phenylanthraquinone, in higher plants was examined by feeding experiments with [13C2]-labeled precursors. [13C2]-Acetate and advanced synthetic intermediates were fed to sterile cultures of Kniphofia pumila (Asphodelaceae), with subsequent NMR analysis on the isolated natural product involving 2D INADEQUATE and SELINQUATE experiments. Due to its uneven number of carbon atoms, and because of its uncertain decarboxylation site, the "northern" part of the molecule (i.

View Article and Find Full Text PDF

The structure and conformation of two native procyanidin trimers in water have been determined using 2D NMR and molecular mechanics. The results show the existence of four rotameric forms, one of which is predominant (60 to 80%). These four rotamers are shown to be in slow to intermediate exchange on the NMR timescale.

View Article and Find Full Text PDF

This paper describes the developments, role and contributions of the NMR spectroscopy groups in the Structural Proteomics In Europe (SPINE) consortium. Focusing on the development of high-throughput (HTP) pipelines for NMR structure determinations of proteins, all aspects from sample preparation, data acquisition, data processing, data analysis to structure determination have been improved with respect to sensitivity, automation, speed, robustness and validation. Specific highlights are protonless (13)C-direct detection methods and inferential structure determinations (ISD).

View Article and Find Full Text PDF

A diagnosis of 3-methylglutaconic aciduria type I (OMIM: 250950) based on elevated urinary excretion of 3-methylglutaconic acid (3MGA), 3-methylglutaric acid (3MG) and 3-hydroxyisovaleric acid (3HIVA) was made in a 61-year-old female patient presenting with leukoencephalopathy slowly progressing over more than 30 years. The diagnosis was confirmed at the enzymatic and molecular level. In vivo brain MR spectroscopic imaging (MRSI) was performed at 3.

View Article and Find Full Text PDF

NMR-based binding and functional screening performed with FAXS (fluorine chemical shift anisotropy and exchange for screening) and 3-FABS (three fluorine atoms for biochemical screening) represents a potential alternative approach to high-throughput screening for the identification of novel potential drug candidates. The major limitation of this method in its current status is its intrinsic low sensitivity that limits the number of tested compounds. One approach for overcoming this problem is the use of a cryogenically cooled (19)F probe that reduces the thermal noise in the receiver circuitry.

View Article and Find Full Text PDF

(1)H-NMR spectroscopy at 500 MHz was used to confirm that a previously unidentified singlet resonance at 3.14 ppm in the spectra of cerebrospinal fluid and plasma samples corresponds to dimethyl sulfone (DMSO(2)). A triple resonance inverse cryogenic NMR probe, with pre-amplifier and the RF-coils cooled to low temperature, was used to obtain an (1)H-(13)C HSQC spectrum of CSF containing 8 microM (753 ng/ml) DMSO(2).

View Article and Find Full Text PDF

13C direct detection provides a valuable alternative to 1H detection to overcome fast relaxation because of its smaller magnetic moment. 13C-13C NOESY spectra were acquired for a dimeric protein of molecular mass 32 000 and for a monomeric analogue. With increasing molecular mass, the quality of 13C-13C NOESY spectra improves while the scalar-based experiments become less sensitive, as predicted by the increase in the molecular mass.

View Article and Find Full Text PDF

The labelling of metabolites with the NMR active nucleus 13C allows not only metabolite enrichments to be monitored, but also the relative fluxes through competing pathways to be delineated. [2-13C, 15N]alanine was used as a metabolic probe to investigate compartmentation in superfused cerebral slices. Perchloric acid extracts of the tissue were investigated using 13C NMR spectroscopy.

View Article and Find Full Text PDF

Cryogenic probe technology can significantly compensate for the inherently low sensitivity of natural abundance 13C NMR spectroscopy. This now permits its routine use in NMR spectroscopy of biofluids, such as urine or plasma, with acquisition times that enable a high throughput of samples. Metabonomic studies often generate numerous samples in order to characterize fully the time-dependent biochemical response to stimuli, but until now, they have been largely conducted using 1H NMR spectroscopy because of its high sensitivity and hence efficient data acquisition.

View Article and Find Full Text PDF

The observation of nuclear Overhauser effects (NOEs) between bound water and biological macromolecules such as proteins and nucleic acids can be improved by inverting the water resonance selectively while compensating for radiation damping effects. The efficiency of inversion, the offset profiles, and the appearance of 2D NOE-NOESY spectra can be improved in comparison with earlier methods.

View Article and Find Full Text PDF

The pKa values of eight glutamic acid residues in the homotrimeric coiled coil domain of chicken matrilin-1 have been determined from 2D H(CA)CO NMR spectra recorded as a function of the solution pH. The pKa values span a range between 4.0 and 4.

View Article and Find Full Text PDF

The structure of the headpiece of the TraM protein was investigated in different solvents. The very first 22 amino acids which alternate in their hydrophilic and hydrophobic character formed a helical structure in the presence of a membrane mimetic. In water alone the structure was flexible with a small amount of helicity according to circular dichroism measurements, whereas a loop structure was observed in dimethyl sulphoxide.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhagegq68ppm642b5qv1a9krg2qc6t6if): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once