Publications by authors named "Moskalenko A"

Traumatic brain injury (TBI) is a global medical concern and has a lasting impact on brain activity with high risks of mortality. Current treatments are inadequate for repairing damaged brain cells or correcting cognitive and behavioral disabilities in TBI patients. Mounting evidence links TBI to the activation of the Integrated Stress Response (ISR) signaling in the brain.

View Article and Find Full Text PDF

Antihistaminic drugs are widely used clinically and have long been primarily known for their use to treat severe allergic conditions caused by histamine release. Antihistaminic drugs also exert central nervous system (CNS) effects, acting as anxiolytics, hypnotics, and neuroleptics. However, these drugs also have multiple serious neuropharmacological side-effects, inducing delirium, hyperarousal, disorganized behavior, and hallucinations.

View Article and Find Full Text PDF

To reduce severe fluoropyrimidine-related toxicity, pharmacogenetic guidelines recommend a dose reduction for carriers of four high-risk variants in the gene (*2A, *13, c.2846A>T, HapB3). The polymorphism in the gene has been shown to enhance the predictive value of these variants.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied social grooming behavior in mice to better understand neuropsychiatric disorders.
  • They analyzed genes linked to abnormal grooming and mapped out protein interactions, revealing several important molecular clusters related to this behavior.
  • Identifying key proteins in these clusters could lead to new treatments for neurological disorders by uncovering underlying cellular mechanisms.
View Article and Find Full Text PDF
Article Synopsis
  • Selective area growth of GaN nanostructures was studied, focusing on the effects of temperature and ammonia flux during hydride vapor phase epitaxy.
  • The research highlighted two growth behaviors in GaN nanowires, including a growth suppression issue that was resolved using a cyclic growth method.
  • A theoretical model was created to explain this growth suppression and various GaN nanocrystal shapes were produced by balancing growth and blocking mechanisms based on temperature and vapor composition, leading to optimal conditions for 5 μm long nanowires.
View Article and Find Full Text PDF

Measurement of photosensitized luminescence of singlet oxygen has been applied to studies of singlet oxygen generation and quenching by C carotenoids (neurosporene, lycopene, rhodopin, and spirilloxanthin) with long chain of conjugated double bonds (CDB) using hexafluorobenzene as a solvent. It has been found that neurosporene, lycopene, and rhodopin are capable of the low efficient singlet oxygen generation in aerated solutions upon photoexcitation in the spectral region of their main absorption maxima. The quantum yield of this process was estimated to be (1.

View Article and Find Full Text PDF

The brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance.

View Article and Find Full Text PDF

Rodent self-grooming is an important complex behavior, and its deficits are translationally relevant to a wide range of neuropsychiatric disorders. Here, we analyzed a comprehensive dataset of 227 genes whose mutations are known to evoke aberrant self-grooming in mice. Using these genes, we constructed the network of their established protein-protein interactions (PPI), yielding several distinct molecular clusters related to postsynaptic density, the Wnt signaling, transcription factors, neuronal cell cycle, NOS neurotransmission, microtubule regulation, neuronal differentiation/trafficking, neurodevelopment and mitochondrial function.

View Article and Find Full Text PDF

Lead halide perovskites open great prospects for optoelectronics and a wealth of potential applications in quantum optical and spin-based technologies. Precise knowledge of the fundamental optical and spin properties of charge-carrier complexes at the origin of their luminescence is crucial in view of the development of these applications. On nearly bulk Cesium-Lead-Bromide single perovskite nanocrystals, which are the test bench materials for next-generation devices as well as theoretical modeling, we perform low temperature magneto-optical spectroscopy to reveal their entire band-edge exciton fine structure and charge-complex binding energies.

View Article and Find Full Text PDF

Objective: To compare the immediate results of extended pelvic surgery before and after introduction of standardized fast track surgery (FTS) protocol into routine clinical practice.

Material And Methods: The study included 111 patients with pelvic tumors who underwent extended pelvic surgery. The control group included 59 patients whose perioperative management implied traditional approaches (2018-2019), the main group - 52 patients with FTS protocol (2020-2021).

View Article and Find Full Text PDF

Organic diammonium cations are a promising component of both layered (2D) and conventional (3D) hybrid halide perovskites in terms of increasing the stability of perovskite solar cells (PSCs). We investigated the crystallization ability of phase-pure 2D perovskites based on 1,4-butanediammonium iodide (BDAI2) with the layer thicknesses n = 1, 2, 3 and, for the first time, revealed the presence of a persistent barrier to obtain BDA-based layered compounds with n > 1. Secondly, we introduced BDAI2 salt into 3D lead−iodide perovskites with different cation compositions and discovered a threshold-like nonmonotonic dependence of the perovskite microstructure, optoelectronic properties, and device performance on the amount of diammonium additive.

View Article and Find Full Text PDF

All-inorganic lead-halide perovskite (LHP) (CsPbX , X = Cl, Br, I) quantum dots (QDs) have emerged as a competitive platform for classical light-emitting devices (in the weak light-matter interaction regime, e.g., LEDs and laser), as well as for devices exploiting strong light-matter interaction at room temperature.

View Article and Find Full Text PDF

It is known that C carotenoids with a short chain of conjugated double bonds (CDB) (5 and 7, respectively) are universal precursors in the biosynthesis of colored carotenoids in plant cells. Previously, using mainly stationary measurements of photosensitized phosphorescence of singlet oxygen (O), we discovered that phytofluene efficiently generates O in aerated solution and therefore, can serve as a source of the UV photodynamic stress in living cells [Ashikhmin et al., Biochemistry (Moscow), 2020, 85, 773].

View Article and Find Full Text PDF

It was established that in a heterogeneous model system, which consisted of two types of complexes: reaction center or core complex of photosystem 2 of higher plants and LH2 complex of the sulfur bacterium Alc. vinosum, BChl850 oxidation of the LH2 complex could be observed under illumination by the light at a wavelength of 662 nm, which is the red absorption band of Chl. It has been shown that this process induces release of singlet oxygen, which is generated in photosystem II complexes and then partially diffuses into LH2 complex, where it oxidizes BChl850.

View Article and Find Full Text PDF

The mechanism of bacteriochlorophyll photooxidation in light-harvesting complexes of a number of purple photosynthetic bacteria when the complexes are excited into the carotenoid absorption bands remains unclear for many years. Here, using narrow-band laser illumination we measured action spectrum of this process for the spectral ranges of carotenoid and bacteriochlorophyll. It is shown that bacteriochlorophyll excitation results in almost no photooxidation of these molecules, while carotenoid excitation leads to oxidation with quantum yield of about 0,0003.

View Article and Find Full Text PDF

The healthcare sector in Ukraine has long been in need of change, and many opportunities of blockchain technology can help it lead the transformation of this sector and ensure compliance with the requirements of the efficiency, safety, novelty, and economic benefits. State-of-the-art on known decisions on the use of blockchain technologies in the information technology for medical data management showed that, despite a large number of different solutions, effective methods and solutions for medical data management based on blockchain technologies are currently lacking. Therefore, improving the efficiency of medical data management by developing methods of medical data management based on blockchain technologies is currently an urgent problem.

View Article and Find Full Text PDF

Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how singlet oxygen affects light-harvesting complexes in various sulfur and nonsulfur photosynthetic bacteria, focusing on specific absorption spectra and carotenoid content.
  • The results indicate that complete carotenoid presence in LH2 complexes enhances resistance to singlet oxygen, while other complexes show significant degradation of bacteriochlorophyll when exposed.
  • The findings suggest that carotenoids' protective role in photosynthesis may not function as effectively in bacterial systems as previously thought, with reduced carotenoid levels surprisingly stabilizing certain complexes instead.
View Article and Find Full Text PDF

The excitation energy transfer (EET) from the bacteriochlorophyll (BChl) Soret band to the second excited state(s) (S) of carotenoids in pigment-protein complexes of purple bacteria was investigated. The efficiency of EET was determined, based on fluorescence excitation and absorption spectra of chromatophores, peripheral light-harvesting complexes (LH2), core complexes (LH1-RC), and pigments in solution. Carotenoid-containing and carotenoid-less samples were compared: LH1-RC and LH2 from , , and chromatophores from and wild type and carotenoid-free strains R-26 and G9.

View Article and Find Full Text PDF

Phytoene and phytofluene - uncolored C carotenoids with short chain of conjugated double bonds (3 and 5, respectively) - are known to be universal precursors in biosynthesis of colored carotenoids in photosynthesizing organisms. It is commonly recognized that C carotenoids are photoprotectors of cells and tissues. We have shown that phytofluene is an exception to this rule.

View Article and Find Full Text PDF

The results of assembling the light-harvesting complexes in the cells of the purple sulfur bacterium Thiorhodospira (T.) sibirica strain Kir-3 while suppressing the biosynthesis of carotenoids with diphenylamine (DPA) were studied. LH2 complexes (B800-850 and B800-830) with different carotenoid composition were isolated from the cells obtained.

View Article and Find Full Text PDF

The direct action of singlet oxygen on the bacteriochlorophyll (BChl) of light-harvesting complexes in the membranes of four species of purple non-sulfur and sulfur photosynthesizing bacteria with and without carotenoids was studied. It was found that BChl in carotenoidless samples is generally more resistant to the action of singlet oxygen compared to the control. It is assumed that carotenoids are not required to protect BChl of bacterial light-harvesting complexes from singlet oxygen, and in the classic work by Griffith et al.

View Article and Find Full Text PDF