Aggression is an adaptive social behavior crucial for the stability and prosperity of social groups. When uncontrolled, aggression leads to pathological violence that disrupts group structure and individual wellbeing. The comorbidity of uncontrolled aggression across different psychopathologies makes it a potential endophenotype of mental disorders with the same neurobiological substrates.
View Article and Find Full Text PDFAngiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake.
View Article and Find Full Text PDFSevere psychological trauma triggers genetic, biochemical and morphological changes in amygdala neurons, which underpin the development of stress-induced behavioural abnormalities, such as high levels of anxiety. miRNAs are small, non-coding RNA fragments that orchestrate complex neuronal responses by simultaneous transcriptional/translational repression of multiple target genes. Here we show that miR-483-5p in the amygdala of male mice counterbalances the structural, functional and behavioural consequences of stress to promote a reduction in anxiety-like behaviour.
View Article and Find Full Text PDFIndirect evidence supports a link between disrupted serotonin (5-hydroxytryptamine; 5-HT) signaling in the brain and addictive behaviors. However, the effects of hyposerotonergia on ethanol drinking behavior are contradictory. In this study, mice deficient in tryptophan hydroxylase 2 (), the rate-limiting enzyme of 5-HT synthesis in the brain, were used to assess the role of central 5-HT in alcohol drinking behavior.
View Article and Find Full Text PDFAstrocytes support and modulate neuronal activity through the release of L-lactate. The suggested roles of astrocytic lactate in the brain encompass an expanding range of vital functions, including central control of respiration and cardiovascular performance, learning, memory, executive behaviour and regulation of mood. Studying the effects of astrocytic lactate requires tools that limit the release of lactate selectively from astrocytes.
View Article and Find Full Text PDFSerotonin is an important signaling molecule in the periphery and in the brain. The hydroxylation of tryptophan is the first and rate-limiting step of its synthesis. In most vertebrates, two enzymes have been described to catalyze this step, tryptophan hydroxylase (TPH) 1 and 2, with expression localized to peripheral and neuronal cells, respectively.
View Article and Find Full Text PDFAstrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited.
View Article and Find Full Text PDFIntroduction: Brain-derived neurotrophic factor (BDNF) has been implicated in the pro-neurogenic effect of selective serotonin reuptake inhibitors. In this study, we used mice lacking brain serotonin to dissect the interplay between BDNF and the serotonin system in mediating the effects of antidepressant pharmacotherapy on adult neurogenesis in the hippocampus.
Methods: Besides citalopram (CIT), we tested tianeptine (TIA), an antidepressant whose mechanism of action is not well understood.
This study focuses on analyzing long-term potentiation (LTP) changes in the lateral nucleus of the amygdala (LA) and in the CA1 region of the hippocampus in slices derived from mice deficient in tryptophan hydroxylase 2 (TPH2 ), the rate-limiting enzyme for 5-HT synthesis in the brain. We found a reduced LTP in both brain structures in TPH2 mice. However, we found no changes in the magnitude of LTP in TPH2 mice compared to wildtype mice when it was preceded by a paired pulse protocol.
View Article and Find Full Text PDFDiscovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest.
View Article and Find Full Text PDFInformation on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to G proteins and may mediate central respiratory sensitivity to CO. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum.
View Article and Find Full Text PDFPhysical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis.
View Article and Find Full Text PDFL-Lactate (LL) is an essential cellular metabolite which can be used to generate energy. In addition, accumulating evidence suggests that LL is used for inter-cellular signalling. Some LL-sensitive receptors have been identified but we recently proposed that there may be yet another unknown G-protein coupled receptor (GPCR) sensitive to LL in the brain.
View Article and Find Full Text PDFThe renin-angiotensin system (RAS) is related to physiological adaptations induced by exercise. Angiotensin-converting enzyme (ACE) 2 is a major regulator of the RAS in tissues, as it metabolizes angiotensin (Ang) II to Ang-(1-7). The aim of this study was to determine the effects of ACE2 deficiency on physical performance and physiological adaptations induced by voluntary running.
View Article and Find Full Text PDFIn the brain, serotonin (5-hydroxytryptamine, 5-HT) controls a multitude of physiological and behavioral functions. Serotonergic neurons in the raphe nuclei give rise to a complex and extensive network of axonal projections throughout the whole brain. A major challenge in the analysis of these circuits is to understand how the serotonergic networks are linked to the numerous functions of this neurotransmitter.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
April 2016
The interplay between BDNF signaling and the serotonergic system remains incompletely understood. Using a highly sensitive enzyme-linked immunosorbent assay, we studied BDNF concentrations in hippocampus and cortex of two mouse models of altered serotonin signaling: tryptophan hydroxylase (Tph)2-deficient (Tph2 (-/-)) mice lacking brain serotonin and serotonin transporter (SERT)-deficient (SERT(-/-)) mice lacking serotonin re-uptake. Surprisingly, hippocampal BDNF was significantly elevated in Tph2 (-/-) mice, whereas no significant changes were observed in SERT(-/-) mice.
View Article and Find Full Text PDFIn the brain, L-lactate is produced by both neurons and astrocytes. There is no doubt that neurons use L-lactate as a supplementary fuel although the importance of this energy source is disputed. Irrespective of its caloric value, L-lactate might also have a signaling role in the brain.
View Article and Find Full Text PDFBackground: Serotonin (5-hydroxytryptamine, 5-HT) is a key modulatory neurotransmitter in the mammalian central nervous system (CNS) that plays an important role as a developmental signal. Several lines of evidence associate altered 5-HT signaling with psychopathology in humans, particularly neurodevelopmental disorders such as autism spectrum disorders (ASD). ASD are characterized by persistent social and communication deficits along with stereotyped and repetitive patterns of behavior, with all symptoms emerging early during development.
View Article and Find Full Text PDFSystemic arterial hypertension has been previously suggested to develop as a compensatory condition when central nervous perfusion/oxygenation is compromised. Principal sympathoexcitatory C1 neurons of the rostral ventrolateral medulla oblongata (whose activation increases sympathetic drive and the arterial blood pressure) are highly sensitive to hypoxia, but the mechanisms of this O2 sensitivity remain unknown. Here, we investigated potential mechanisms linking brainstem hypoxia and high systemic arterial blood pressure in the spontaneously hypertensive rat.
View Article and Find Full Text PDFTryptophan hydroxylase (TPH) is a rate limiting enzyme in the synthesis of serotonin (5-HT), a monoamine which works as an autacoid in the periphery and as a neurotransmitter in the central nervous system. In 2003 we have discovered the existence of a second Tph gene, which is expressed exclusively in the brain, and, therefore, is responsible for the 5-HT synthesis in the central nervous system. In the following years several research groups have independently generated Tph2-deficient mice.
View Article and Find Full Text PDFPolymorphisms in the TPH2 gene coding for the serotonin synthesizing enzyme in the brain are considered as risk factors associated with depression and anxiety in humans. However, whether a certain variation in the TPH2 gene leads to decreased brain serotonin production and development of psychological abnormalities remains unresolved. We generated a new mouse model, carrying one Tph2-null allele and one Tph21473G-allele, coding for a hypoactive form of the enzyme.
View Article and Find Full Text PDFVoluntary wheel running has long been known to induce precursor cell proliferation in adult hippocampal neurogenesis in rodents. However, mechanisms that couple activity with the promitotic effect are not yet fully understood. Using tryptophan hydroxylase (TPH) 2 deficient (Tph2-deficient) mice that lack brain serotonin, we explored the relationship between serotonin signaling and exercise-induced neurogenesis.
View Article and Find Full Text PDF