Introduction: Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina.
View Article and Find Full Text PDFUnderstanding how the retina converts a natural image or an electrically stimulated one into neural firing patterns is the focus of on-going research activities., the retina can be readily investigated using multi electrode arrays (MEAs). However, MEA recording and stimulation from an intact retina (in the eye) has been so far insufficient.
View Article and Find Full Text PDFObjective: Human facial muscle activation underlies highly sophisticated signaling mechanisms that are critically important for healthy physiological function. Accordingly, the necessity to analyze facial muscle activation at high-resolution and in a non-invasive manner is important for the diagnosis and treatment of many medical conditions. However, current clinical examination methods are neither precise nor quantitative.
View Article and Find Full Text PDFObjective: Circadian and sleep dysfunction have long been symptomatic hallmarks of a variety of devastating neurodegenerative conditions. The gold standard for sleep monitoring is overnight sleep in a polysomnography (PSG) laboratory. However, this method has several limitations such as availability, cost and being labour-intensive.
View Article and Find Full Text PDFAn efficient nanoscale semiconducting optoelectronic system is reported, which is optimized for neuronal stimulation: the organic electrolytic photocapacitor. The devices comprise a thin (80 nm) trilayer of metal and p-n semiconducting organic nanocrystals. When illuminated in physiological solution, these metal-semiconductor devices charge up, transducing light pulses into localized displacement currents that are strong enough to electrically stimulate neurons with safe light intensities.
View Article and Find Full Text PDFHuman facial expressions are a complex capacity, carrying important psychological and neurological information. Facial expressions typically involve the co-activation of several muscles; they vary between individuals, between voluntary versus spontaneous expressions, and depend strongly on personal interpretation. Accordingly, while high-resolution recording of muscle activation in a non-laboratory setting offers exciting opportunities, it remains a major challenge.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2017
Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing.
View Article and Find Full Text PDFThe choice of electrode material is of paramount importance in neural prosthetic devices. Electrodes must be biocompatible yet able to sustain repetitive current injections in a highly corrosive environment. We explored the suitability of carbon nanotube (CNT) electrodes to stimulate retinal ganglion cells (RGCs) in a mouse model of outer retinal degeneration.
View Article and Find Full Text PDFElectromyography is a non-invasive method widely used to map muscle activation. For decades, it was commonly accepted that dry metallic electrodes establish poor electrode-skin contact, making them impractical for skin electromyography applications. Gelled electrodes are therefore the standard in electromyography with their use confined, almost entirely, to laboratory settings.
View Article and Find Full Text PDFWe report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films.
View Article and Find Full Text PDFNeuro-prosthetic devices aim to restore impaired function through artificial stimulation of the nervous system. A lingering technological bottleneck in this field is the realization of soft, micron sized electrodes capable of injecting enough charge to evoke localized neuronal activity without causing neither electrode nor tissue damage. Direct stimulation with micro electrodes will offer the high efficacy needed in applications such as cochlear and retinal implants.
View Article and Find Full Text PDFHigh-density carbon nanotube (CNT)-coated surfaces are highly neuro-adhesive. When shaped into regular arrays of isolated islands on a non-adhesive support substrate (such as a clean glass), CNTs can function as effective encoring sites for neurons and glia cells for in-vitro applications. Primarily, patterned CNT islands provide a means to form complex, engineered, interconnected neuronal networks with pre-designed geometry via utilizing the self-assembly process of neurons.
View Article and Find Full Text PDFThe question of neuronal network development and organization is a principle one, which is closely related to aspects of neuronal and network form-function interactions. In-vitro two-dimensional neuronal cultures have proved to be an attractive and successful model for the study of these questions. Research is constraint however by the search for techniques aimed at culturing stable networks, whose electrical activity can be reliably and consistently monitored.
View Article and Find Full Text PDFWe have investigated the use of carbon nanotube coated microelectrodes as an interface material for retinal recording and stimulation applications. Test devices were micro-fabricated and consisted of 60, 30 mum diameter electrodes at spacing of 200 mum. These electrodes were coated via chemical vapor deposition of carbon nanotubes, resulting in conducting, three dimensional surfaces with a high interfacial area.
View Article and Find Full Text PDFThe organization of neurons and glia cells on substrates composed of pristine carbon nanotube islands was investigated using high resolution scanning electron microscopy, immunostaining and confocal microscopy. Neurons were found bound and preferentially anchored to the rough surfaces; moreover, the morphology of the neuronal processes on the small, isolated islands of high density carbon nanotubes was found to be conspicuously curled and entangled. We further demonstrate that the roughness of the surface must match the diameter of the neuronal processes in order to allow them to bind.
View Article and Find Full Text PDF