Objectives: This study aimed to develop models that can automatically detect anterior disc displacement (ADD) of the temporomandibular joint (TMJ) on MRIs before orthodontic treatment to reduce the risk of developing serious complications after treatment.
Methods: We used 9009 sagittal MRI of the TMJ as input and constructed three sets of deep learning models to detect ADD automatically. Deep learning models were developed using a convolutional neural network (CNN) based on the ResNet architecture and the "Imagenet" database.
Objective: This study aimed to provide further information on the exact mechanisms involved in the anti-inflammatory effect of low-intensity pulsed ultrasound (LIPUS) on rabbit temporomandibular joint osteoarthritis (TMJOA) on interleukin-6 (IL-6) production in subchondral bone, IL-6 production in IL-1β stimulated via inhibition of the TGF-β1/Smad3 pathway in mouse embryo osteoblast precursor (MC3T3-E1) cells.
Design: Bilateral joints were injected with type II collagenase to establish TMJOA models in two male and four female rabbits. The left joint was continuously stimulated by LIPUS, while the right joint was treated with the power off in this model.
Cells Tissues Organs
December 2021
As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation.
View Article and Find Full Text PDFPurpose: The self-repair ability of temporomandibular joint (TMJ) cartilage is limited. Hypoxia-inducible factor-1 alpha (HIF-1alpha) may induce stem cells to promote chondrogenic repair. The purpose of this study was to systematically evaluate the effect of HIF-1alpha overexpression in bone marrow mesenchymal stem cells (BMSCs) combined with collagen scaffolds on the repair of TMJ condylar osteochondral defects in a rabbit model.
View Article and Find Full Text PDF