Publications by authors named "Mosesson M"

PECAM-1 is a 130-kDa member of the immunoglobulin (Ig) superfamily that is expressed on the surface of platelets and leukocytes, and at the intracellular junctions of confluent endothelial cell monolayers. Previous studies have shown that PECAM-1/PECAM-1 homophilic interactions play a key role in leukocyte transendothelial migration, in allowing PECAM-1 to serve as a mechanosensory complex in endothelial cells, in its ability to confer cytoprotection to proapoptotic stimuli, and in maintaining endothelial cell junctional integrity. To examine the adhesive properties of full-length PECAM-1 in a native lipid environment, we purified it from platelets and assembled it into phospholipid nanodiscs.

View Article and Find Full Text PDF

Removal of Bbetal-42 from fibrinogen by Crotalus atrox venom results in a molecule lacking fibrinopeptide B and part of a thrombin binding site. We investigated the mechanism of polymerization of desBbeta1-42 fibrin. Fibrinogen trinodular structure was clearly observed using high resolution noncontact atomic force microscopy.

View Article and Find Full Text PDF

In mice lacking the blood coagulation regulator thrombomodulin, fibrinolytic degradation products (FDP) of fibrin induce apoptotic cell death of a specialized cell type in the placenta, polyploid trophoblast giant cells. Here, we document that this bioactivity of FDP is conserved in human FDP, is not limited to trophoblast cells, and is associated with an Aalpha-chain segment of fibrin fragment E (FnE). The majority of proapoptotic activity is arginine-glycine-aspartic acid (RGD)-independent and requires caveolin-1-dependent cellular internalization of FnE.

View Article and Find Full Text PDF

Background And Objectives: Thrombin binding activity in murine fibrin (Antithrombin I) is restricted to its E domains inasmuch as murine gamma' chains (mu-gamma') do not bind thrombin. This feature prompted us to produce a 'gain-of-function' transgenic mouse in which the wild-type (WT) C-terminal mu-gamma' chain fibrinogen sequence had been replaced with the C-terminal thrombin-binding human gamma' sequence.

Results: This procedure resulted in a murine fibrinogen species containing chimeric hu-gamma' chains (hu-gamma' fibrinogen).

View Article and Find Full Text PDF

Background: Plasma alpha2-antiplasmin (alpha2AP) is a rapid and effective inhibitor of the fibrinolytic enzyme plasmin. Congenital alpha2AP deficiency results in a severe hemorrhagic disorder due to accelerated fibrinolysis. It is well established that in the presence of thrombin-activated factor XIII (FXIIIa), alpha2AP becomes covalently ligated to the distal alpha chains of fibrin or fibrinogen at lysine 303 (two potential sites per molecule).

View Article and Find Full Text PDF

Background: The effects of synthetic peptides with sequences derived from the gamma-chain of fibrinogen on the functional properties of fibrinogen and fibrin were investigated.

Methods: Methods included thrombelastography, clot turbidity measurement, clot elasticity measurement, platelet aggregation, and scanning transmission electron microscopy (STEM).

Results: Peptide gamma369-380 (NH(2)-WATWKTRWYSMK-COOH) showed the greatest impact on fibrin structure, compared with the 76 other overlapping dodecapeptides.

View Article and Find Full Text PDF

Fibrinogen is an essential component of the coagulation cascade and the acute phase response. The native 340 kDa molecule has a symmetrical trinodular structure composed of a central E-domain connected to outer D-domains by triple helical coiled-coils.1 Several mutations known to cause hypofibrinogenemia occur within the C-terminal gammaD-domain and have helped to elucidate the structurally and functionally important areas of this domain.

View Article and Find Full Text PDF

Antithrombin I (fibrin) is an important inhibitor of thrombin generation that functions by sequestering thrombin in the forming fibrin clot, and also by reducing the catalytic activity of fibrinbound thrombin. Thrombin binding to fibrin takes place at two classes of non-substrate sites: 1) in the fibrin E domain (two per molecule) through interaction with thrombin exosite 1; 2) at a single site on each gamma' chain through interaction with thrombin exosite 2. The latter reaction results in allosteric changes that down-regulate thrombin catalytic activity.

View Article and Find Full Text PDF

Background: Human fibrinogen gamma chain variants, termed gamma' chains, contain a unique 20-residue sequence after gamma chain residue 407 that ends at gamma'427, and is designated gamma'(427L). Full-length (FL) gamma'(427L) chains are constituents of a fibrin-dependent thrombin inhibitory system known as antithrombin I, whereas a gamma' chain processed in vivo, termed gamma'(423P), lacks the C-terminal tetrapeptide EDDL, and does not bind thrombin. Together, the gamma'(423P) and gamma'(427L) chains comprise the total plasma fibrinogen gamma' chain content.

View Article and Find Full Text PDF

Elevated levels of heterodimeric gamma(A)/gamma' fibrinogen 2 have been associated with an increased incidence of coronary artery disease, whereas a lowered content of gamma' chains is associated with an increased risk of venous thrombosis. Both situations may be related to the unique features of thrombin binding to variant gamma' chains. The gamma' peptide is an anionic fragment that binds thrombin with high affinity without interfering directly with substrate binding.

View Article and Find Full Text PDF

Nonsubstrate interaction of thrombin with fibrinogen promotes sequential cleavage of fibrinopeptides A and B (fpA and fpB, respectively) from the latter, resulting in its conversion into fibrin. The recently established crystal structure of human thrombin in complex with the central part of human fibrin clarified the mechanism of this interaction. Here, we reveal new details of the structure and present the results of molecular modeling of the fpA- and fpB-containing portions of the Aalpha and Bbeta chains, not identified in the complex, in both fibrinogen and protofibrils.

View Article and Find Full Text PDF

We have identified a novel heterozygous fibrinogen gamma chain mutation, gammaN345S (Fibrinogen Saint-Germain II), in a subject with hypofibrinogenemia. There was no evidence by mass spectrometry of plasma fibrinogen containing the mutant chain. The hypofibrinogenemia was discovered in a 26-year-old man who experienced extensive deep venous thrombosis of the left leg associated with pulmonary embolism.

View Article and Find Full Text PDF

Fibrinogen molecules are comprised of two sets of disulfide-bridged Aalpha-, Bbeta-, and gamma-chains. Each molecule contains two outer D domains connected to a central E domain by a coiled-coil segment. Fibrin is formed after thrombin cleavage of fibrinopeptide A (FPA) from fibrinogen Aalpha-chains, thus initiating fibrin polymerization.

View Article and Find Full Text PDF

Human fibrinogen 1 is homodimeric with respect to its gamma chains (gammaA-gammaA'), whereas fibrinogen 2 molecules each contain one gammaA (gammaA1-411V) and one gamma' chain, which differ by containing a unique C-terminal sequence from gamma'408 to 427L that binds thrombin and factor XIII. We investigated the structural and functional features of these fibrins and made several observations. First, thrombin-treated fibrinogen 2 produced finer, more branched clot networks than did fibrin 1.

View Article and Find Full Text PDF

This article describes the role John Ferry played in relating the location of cross-linked gamma-chains in fibrin fibrils to the mechanical properties of fibrin clot.

View Article and Find Full Text PDF

Fibrinogen-420 is a minor subclass of human fibrinogen that is so named because of its higher molecular weight compared to fibrinogen-340, the predominant form of circulating fibrinogen. Each of the two Aalpha chains of fibrinogen-340 is replaced in fibrinogen-420 by an Aalpha isoform termed alphaE. Such chains contain a globular C-terminal extension, alphaEC, that is homologous with the C-terminal regions of Bbeta and gamma chains in the fibrin D domain.

View Article and Find Full Text PDF

The objective of this study was to explore the molecular mechanisms of adhesion of endothelial cells (ECs) to implant grades of titanium alloy (Ti) and stainless steel (SS), compared to tissue culture polystyrene (PS). The idea is that promotion of EC adhesion to implant surfaces during the initial stages of healing may be critical in the formation of a capillary bed intimately associated with the implant surface. Ultimately this could be expected in turn to promote bone formation close to the surface and a more stable implant/bone interface.

View Article and Find Full Text PDF