IEEE J Biomed Health Inform
February 2020
Measures of fMRI brain entropy have been used to investigate age and disease related neural changes. However, it is unclear if movement in the scanner is associated with brain entropy after geometric correction for movement. As age and disease can affect motor control, quantifying and correcting for the influence of movement will avoid false findings.
View Article and Find Full Text PDFFunctional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS).
View Article and Find Full Text PDFReal-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components.
View Article and Find Full Text PDFMagn Reson Imaging
January 2017
The feedback of real-time functional magnetic resonance imaging (rtfMRI) signals, dubbed "neurofeedback", has found applications in the treatment of clinical disorders and enhancement of brain performance. However, knowledge of the basic underlying mechanism on which neurofeedback is based is rather limited. This article introduces the concepts, principles and characteristics of feedback control systems and its applications to electroencephalography (EEG) and rtfMRI signals.
View Article and Find Full Text PDFFMRI-based neurofeedback transforms functional brain activation in real-time into sensory stimuli that participants can use to self-regulate brain responses, which can aid the modification of mental states and behavior. Emerging evidence supports the clinical utility of neurofeedback-guided up-regulation of hypoactive networks. In contrast, down-regulation of hyperactive neural circuits appears more difficult to achieve.
View Article and Find Full Text PDFIn this study, we present a method for measuring functional magnetic resonance imaging (fMRI) signal complexity using fuzzy approximate entropy (fApEn) and compare it with the established sample entropy (SampEn). Here we use resting state fMRI dataset of 86 healthy adults (41 males) with age ranging from 19 to 85 years. We expect the complexity of the resting state fMRI signals measured to be consistent with the Goldberger/Lipsitz model for robustness where healthier (younger) and more robust systems exhibit more complexity in their physiological output and system complexity decrease with age.
View Article and Find Full Text PDFFor most people, adolescence is synonymous with emotional turmoil and it has been shown that early difficulties with emotion regulation can lead to persistent problems for some people. This suggests that intervention during development might reduce long-term negative consequences for those individuals. Recent research has highlighted the suitability of real-time fMRI-based neurofeedback (NF) in training emotion regulation (ER) networks in adults.
View Article and Find Full Text PDFHere we present a novel neurofeedback subsystem for the presentation of motivationally relevant visual feedback during the self-regulation of functional brain activation. Our "motivational neurofeedback" approach uses functional magnetic resonance imaging (fMRI) signals elicited by visual cues (pictures) and related to motivational processes such as craving or hunger. The visual feedback subsystem provides simultaneous feedback through these images as their size corresponds to the magnitude of fMRI signal change from a target brain area.
View Article and Find Full Text PDFSome studies have placed Sample entropy on the same data length constraint of 10 (m) -20 (m) (m: pattern length) as approximate entropy, even though Sample entropy is largely independent of data length and displays relative consistency over a broader range of possible parameters (r, tolerance value; m, pattern length; N, data length) under circumstances where approximate entropy does not. This is particularly erroneous for some fMRI experiments where the working data length is less than 100 volumes (when m = 2). We therefore investigated whether Sample entropy is able to effectively discriminate fMRI data with data length, N less than 10 (m) (where m = 2) and r = 0.
View Article and Find Full Text PDFWe investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H). 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV) criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T.
View Article and Find Full Text PDFIn patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2011
We investigated the association between individual differences in cognitive performance in old age and the approximate entropy (ApEn) measured from functional magnetic resonance imaging (fMRI) data acquired from 40 participants of the Aberdeen Birth Cohort 1936 (ABC1936), while undergoing a visual information processing task: inspection time (IT). Participants took a version of the Moray House Test (MHT) No. 12 at age 11, a valid measure of childhood intelligence.
View Article and Find Full Text PDF