Publications by authors named "Moses Basitere"

As the world's population expands, edible insects have been proposed as a food source that might address issues related to nutrition, health, the environment, and the economy. This study aimed to create a novel biscuit by adding () flour to wheat flour in various concentrations (5,10, 15 and 20 %). The moisture content of the insect composite flours varied between 6.

View Article and Find Full Text PDF

This study aimed to assess the antimicrobial activities of plant extracts from and when used as coatings for textiles. A pulsed ultrasound-assisted extraction method (PUAE) was employed to obtain methanolic and hexanoic extracts from both plants. methanol extraction exhibited the highest yield at 22.

View Article and Find Full Text PDF

Medicinal plants are the product of natural drug discoveries and have gained traction due to their pharmacological activities. Pathogens are everywhere, and they thrive in ideal conditions depending on the nutrients, moisture, temperature, and pH that increase the growth of harmful pathogens on surfaces and textiles. Thus, antimicrobial agents and finishes may be the solution to the destruction of pathogens.

View Article and Find Full Text PDF

In this study, edible insect flours from Gonimbrasia belina (Mashonzha), Hermetia illucens (black soldier fly larvae) and Macrotermes subhylanus (Madzhulu) were prepared and assessed in terms of proximal, physicochemical, techno-functional and antioxidant properties. The crude protein of the edible insect flours varied between 34.90−52.

View Article and Find Full Text PDF

This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system's configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as HS known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment.

View Article and Find Full Text PDF

This study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h.

View Article and Find Full Text PDF

In this study, the treatment of poultry slaughterhouse wastewater (PSW) was evaluated using two new down-flow high-rate anaerobic bioreactor systems (HRABS), including the down-flow expanded granular bed reactor (DEGBR) and the static granular bed reactor (SGBR). These two bioreactors have demonstrated a good performance for the treatment of PSW with removal percentages of the biochemical oxygen demand (BOD), the chemical oxygen demand (COD), and fats, oil, and grease (FOG) exceeding 95% during peak performance days. This performance of down-flow HRABS appears as a breakthrough in the field of anaerobic treatment of medium to high-strength wastewater because down-flow anaerobic bioreactors have been neglected for the high-rate anaerobic treatment of such wastewater due to the success of up-flow anaerobic reactors such as the UASB and the EGSB as a result of the granulation of a consortium of anaerobic bacteria required for efficient anaerobic digestion and biogas production.

View Article and Find Full Text PDF