Currently, highly active antiretroviral therapy is unable to cure HIV/AIDS because of HIV latency. This study aimed at documenting medicinal plants used in the management of HIV/AIDS in Eastern Uganda so as to identify phytochemicals with HIV latency reversing potential. An ethnobotanical survey was conducted across eight districts in Eastern Uganda.
View Article and Find Full Text PDFTreatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin.
View Article and Find Full Text PDF(Fabaceae) crude extracts are key ingredients of several licensed and unlicensed herbal products in East Africa. However, there is limited and often contradicting information regarding its toxicity. We therefore evaluated the acute and subacute toxicity of the ethanolic stem bark extract of in mature healthy Wistar albino rats following Lorke's method and OECD guidelines 407.
View Article and Find Full Text PDFBackground: Welw ex. Oliver (Fabaceae) is one of the plants used by herbalists in the East Africa community to prepare herbal remedies for the management of symptoms of TB. Despite its widespread use, the antimycobacterial activity of this plant was uninvestigated and there was contradicting information regarding its cytotoxicity.
View Article and Find Full Text PDFIn this study, the antileishmanial and cytotoxic activities of secondary metabolites isolated from Hochst. ex A. DC.
View Article and Find Full Text PDFβ-Sitosterol (β-Sit) is a dietary phytosterol with demonstrated anticancer activity against a panel of cancers, but its poor solubility in water limits its bioavailability and therapeutic efficacy. In this study, poly(lactide-co-glycolic acid) (PLGA) and block copolymers of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) were used to encapsulate β-Sit into nanoparticles with the aim of enhancing its in vitro anticancer activity. β-Sitosterol-loaded PLGA and PEG-PLA nanoparticles (β-Sit-PLGA and β-Sit-PEG-PLA) were prepared by using a simple emulsion-solvent evaporation technique.
View Article and Find Full Text PDF