Intranasal (IN) delivery is a rapidly developing area for therapies with great potential for the treatment of central nervous system (CNS) diseases. Moreover, in vivo imaging is becoming an important part of therapy assessment, both clinically in humans and translationally in animals. IN drug delivery is an alternative to systemic administration that uses the direct anatomic pathway between the olfactory/trigeminal neuroepithelium of the nasal mucosa and the brain.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) contrast agents (CAs) are chemical compounds that can enhance image contrast on T1- or T2- weighted MR image. We have previously demonstrated the potential of MnCl2, a manganese-based CA, in cellular imaging of breast cancer using T1-weighted MRI. In this work, we examined the potential of another class of manganese-based CAs, manganese porphyrins (MnPs), for sensitive cellular detection of multiple clinical subtypes of breast cancer using quantitative MRI.
View Article and Find Full Text PDFVery early cancer detection is the key to improving cure. Our objective was to investigate manganese (Mn)-enhanced magnetic resonance imaging (MRI) for very early detection and characterization of breast cancers. Eighteen NOD scid gamma mice were inoculated with MCF7, MDA, and LM2 breast cancer cells and imaged periodically on a 3 T scanner beginning on day 6.
View Article and Find Full Text PDFPurpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissues in vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments.
Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissues in vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on seven HIFU-treated tissue samples.
Purpose: To investigate the potential of manganese (Mn)-enhanced MRI for sensitive detection and delineation of tumors that demonstrate little enhancement on Gd-DTPA.
Materials And Methods: Eighteen nude rats bearing 1 to 2 cm in diameter orthotopic breast tumors (ZR75 and LM2) were imaged on a 3 Tesla (T) clinical scanner. Gd-DTPA was administered intravenously and MnCl2 subcutaneously, both at 0.