Publications by authors named "Morwen R M Williams"

A series of cationic mixed cyclometallated (C^N)Au(iii) dithiocarbamate complexes has been synthesized in good yields [HC^N = 2-(p-t-butylphenyl)pyridine]. The crystal structure of [(C^N)AuS2CNEt2]PF6 (3) has been determined. The cytotoxic properties of the new complexes have been evaluated in vitro against a panel of human cancer cell lines and healthy cells and compared with a neutral mixed (C^C)Au(iii) dithiocarbamate complex (C^C = 4,4'-di-t-butylbiphenyl-2,2'-diyl).

View Article and Find Full Text PDF

(C^N) and (C^N^C) cyclometalated Au(iii) represent a highly promising class of potential anticancer agents. We report here the synthesis of seven new cyclometalated Au(iii) complexes with five of them bearing an acridine moiety attached via (N^O) or (N^N) chelates, acyclic amino carbenes (AAC) and N-heterocyclic carbenes (NHC). The antiproliferative properties of the different complexes were evaluated in vitro on a panel of cancer cells including leukaemia, lung and breast cancer cells.

View Article and Find Full Text PDF

Gold(III) complexes have emerged as a versatile and effective class of metal-based anticancer agents. The development of various types of ligands capable of stabilizing the Au cation and preventing its reduction under physiological conditions, such as chelating nitrogen-donors, dithiocarbamates and C^N cyclometalled ligands, has opened the way for the exploration of their potential intracellular targets and action mechanisms. At the same time, the bioconjugation of Au complexes has emerged as a promising strategy for improving the selectivity of this class of compounds for cancer cells over healthy tissues, and recent developments have shown that combining gold complexes with molecular structures that are specifically recognized by the cell can exploit the cell's own transport mechanisms to improve selective metal uptake.

View Article and Find Full Text PDF