Objective: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) promote urinary glucose excretion, induce weight loss, and reduce fat accumulation. The effects of the SGLT2i dapagliflozin (DAPA) on subcutaneous (SC) and visceral (VIS) adipose tissue function remain unclear. The objective of this study is to evaluate SC and VIS adipose tissue function in an insulin-resistant canine model.
View Article and Find Full Text PDFIn the 1950's, Dr. I. Arthur Mirsky first recognized the possible importance of insulin degradation changes to the pathogenesis of type 2 diabetes.
View Article and Find Full Text PDFInt J Mol Sci
April 2021
The authors wish to make the following corrections to this paper [...
View Article and Find Full Text PDFInt J Mol Sci
September 2020
With the increased prevalence of obesity and related co-morbidities, such as type 2 diabetes (T2D), worldwide, improvements in pharmacological treatments are necessary. The brain- and peripheral-cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been shown to induce weight loss and improve glucose homeostasis. We have previously demonstrated that RIM promotes adipose tissue beiging and decreased adipocyte cell size, even during maintenance on a high-fat diet.
View Article and Find Full Text PDFThere is wide variance among individuals in the fraction of insulin cleared by the liver (20% to 80%). Hepatic insulin clearance is 67% lower in African Americans than European Americans. Clearance is also lower in African American children 7-13 years of age.
View Article and Find Full Text PDFCB1 receptor (CB1R) antagonism improves the deleterious effects of a high-fat diet (HFD) by reducing body fat mass and adipocyte cell size. Previous studies demonstrated that the beneficial effects of the CB1R antagonist rimonabant (RIM) in white adipose tissue (WAT) are partially due to an increase of mitochondria numbers and upregulation thermogenesis markers, suggesting an induction of WAT beiging. However, the molecular mechanism by which CB1R antagonism induces weight loss and WAT beiging is unclear.
View Article and Find Full Text PDFMalfunction of the liver is a central factor in metabolic disease. Glucose production by liver is complex and controlled via indirect mechanisms; insulin regulates adipose tissue lipolysis, and free fatty acids in turn regulate liver glucose output. This latter concept is confirmed by studies in L-Akt-Foxo1 knockout mice.
View Article and Find Full Text PDFDiabetes is often thought of as one of two diseases: Type 1 diabetes (T1D), which is caused by immunological destruction of the beta-cells, and Type 2 diabetes (T2D), which is due to a combination of insulin resistance and relative failure of the beta-cells to compensate for the resistance. It is becoming clear, however, that even within these two definitions there may be considerable heterogeneity (1). There are several approaches to examine heterogeneity of T2D.
View Article and Find Full Text PDFAlthough the β-cells secrete insulin, the liver, with its first-pass insulin extraction (FPE), regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is a major determinant of insulin sensitivity (SI). We studied the intricate relationship among FPE, SI, and fasting insulin.
View Article and Find Full Text PDFHyperinsulinemia, accompanied by reduced first-pass hepatic insulin extraction (FPE) and increased secretion, is a primary response to insulin resistance. Different in vivo methods are used to estimate the clearance of insulin, which is assumed to reflect FPE. We compared two methodologically different but commonly used indirect estimates with directly measured FPE in healthy dogs ( n = 9).
View Article and Find Full Text PDFActivation of the sympathetic nervous system (SNS) constitutes a putative mechanism of obesity-induced insulin resistance. Thus, we hypothesized that inhibiting the SNS by using renal denervation (RDN) will improve insulin sensitivity (S) in a nonhypertensive obese canine model. S was measured using euglycemic-hyperinsulinemic clamp (EGC), before (week 0 [w0]) and after 6 weeks of high-fat diet (w6-HFD) feeding and after either RDN (HFD + RDN) or sham surgery (HFD + sham).
View Article and Find Full Text PDFBackground: Exenatide's effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes.
Objective: We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines.
Design And Methods: After 10 weeks of high-fat diet (HFD), adult dogs received one injection of streptozotocin (STZ, 18.
The improvement of hepatic insulin sensitivity by the cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been recently been reported to be due to upregulation of adiponectin. Several studies demonstrated that improvement in insulin clearance accompanies the enhancement of hepatic insulin sensitivity. However, the effects of RIM on hepatic insulin clearance (HIC) have not been fully explored.
View Article and Find Full Text PDFBackground: Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia.
Objective: To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets.
Obesity (Silver Spring)
January 2015
Objectives: To determine whether a selective increase of visceral adipose tissue content will result in insulin resistance.
Methods: Sympathetic denervation of the omental fat was performed under general inhalant anesthesia by injecting 6-hydroxydopamine in the omental fat of lean mongrel dogs (n = 11). In the conscious animal, whole-body insulin sensitivity was assessed by the minimal model (SI ) and the euglycemic hyperinsulinemic clamp (SICLAMP ).
Accurate quantification of insulin resistance is essential for determining efficacy of treatments to reduce diabetes risk. Gold-standard methods to assess resistance are available (e.g.
View Article and Find Full Text PDFObjective: Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, nonstimulated conditions.
Methods: Metabolic assessment was performed in healthy dogs (n = 90).
The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB(1) receptor improves insulin sensitivity (S(I)). However, it is unknown whether this improvement is due to the direct effect of CB(1) blockade on peripheral tissues or secondary to decreased fat mass.
View Article and Find Full Text PDFObesity (Silver Spring)
November 2011
Adipocyte size plays a key role in the development of insulin resistance. We examined longitudinal changes in adipocyte size and distribution in visceral (VIS) and subcutaneous (SQ) fat during obesity-induced insulin resistance and after treatment with CB-1 receptor antagonist, rimonabant (RIM) in canines. We also examined whether adipocyte size and/or distribution is predictive of insulin resistance.
View Article and Find Full Text PDFObjectives: The canine model has been used extensively to improve the human pancreatic islet isolation technique. At the functional level, dog islets show high similarity to human islets and thus can be a helpful tool for islet research. We describe and compare 2 manual isolation methods, M1 (initial) and M2 (modified), and analyze the variables associated with the outcomes, including islet yield, purity, and glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2010
Human type 2 diabetes mellitus (T2DM) is often characterized by obesity-associated insulin resistance (IR) and beta-cell function deficiency. Development of relevant large animal models to study T2DM is important and timely, because most existing models have dramatic reductions in pancreatic function and no associated obesity and IR, features that resemble more T1DM than T2DM. Our goal was to create a canine model of T2DM in which obesity-associated IR occurs first, followed by moderate reduction in beta-cell function, leading to mild diabetes or impaired glucose tolerance.
View Article and Find Full Text PDFWe investigated whether rimonabant, a type 1 cannabinoid receptor antagonist, reduces visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in dogs maintained on a hypercaloric high-fat diet (HHFD). To determine whether energy expenditure contributed to body weight changes, we also calculated resting metabolic rate. Twenty male dogs received either rimonabant (1.
View Article and Find Full Text PDF