Publications by authors named "Morufu Olusola Ibitoye"

Prior studies have revealed that the structural design of stents is critical to reducing some of the alarming post-operative complications associated with stent-related intervention. However, the technical search for stents that guarantee robustness against stent-induced post-intervention complications remains an open problem. Along this objective, this study investigates a re-entrant auxetic stent's structural response and performance optimizations.

View Article and Find Full Text PDF

Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022.

View Article and Find Full Text PDF

Surgical site infections (SSIs) in developing countries have been linked to inadequate availability of sterilising equipment. Existing autoclaves are mostly unaffordable by rural healthcare practitioners, and when they managed to procure them, the electricity supply to power the autoclaves is epileptic. The solar-powered autoclave alternatives are too bulky with a very high initial cost.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used support vector regression (SVR) modeling to estimate knee torque from mechanomyographic (MMG) signals in individuals with spinal cord injuries during NMES-assisted knee extension.
  • The SVR model achieved high estimation accuracy, with R-values of 95% for training and 94% for testing with a Gaussian kernel and slightly lower values for a polynomial kernel.
  • The findings suggest that MMG signals can effectively serve as a proxy for NMES-assisted torque, paving the way for improved applications in research and clinical practices involving NMES systems.
View Article and Find Full Text PDF

Neurodegenerative illnesses due to diseases or old age are typical examples of clinical conditions that may affect the proper observation of prescribed medication usage with negative consequence on dose potency. Commercially available medicine dispenser for these populations are expensive, complex to operate and/or beyond the reach of those living in low resource settings due to lack of social protection. This study presents the design and construction of an inexpensive ($49.

View Article and Find Full Text PDF

This study investigates whether mechanomyography (MMG) produced from contracting muscles as a measure of their performance could be a proxy of muscle fatigue during a sustained functional electrical stimulation (FES)-supported standing-to-failure task. Bilateral FES-evoked contractions of quadriceps and glutei muscles, of four adults with motor-complete spinal cord injury (SCI), were used to maintain upright stance using two different FES frequencies: high frequency (HF - 35 Hz) and low frequency (LF - 20 Hz). The time at 30° knee angle reduction was taken as the point of critical "fatigue failure", while the generated MMG characteristics were used to track the pattern of force development during stance.

View Article and Find Full Text PDF

Background: Investigation of muscle fatigue during functional electrical stimulation (FES)-evoked exercise in individuals with spinal cord injury using dynamometry has limited capability to characterize the fatigue state of individual muscles. Mechanomyography has the potential to represent the state of muscle function at the muscle level. This study sought to investigate surface mechanomyographic responses evoked from quadriceps muscles during FES-cycling, and to quantify its changes between pre- and post-fatiguing conditions in individuals with spinal cord injury.

View Article and Find Full Text PDF

The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields.

View Article and Find Full Text PDF

The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI.

View Article and Find Full Text PDF

Background: Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise.

View Article and Find Full Text PDF

The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions.

View Article and Find Full Text PDF

The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science.

View Article and Find Full Text PDF

Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information.

View Article and Find Full Text PDF