Purpose: In the present study, biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanoparticles (NPs) containing insulin were loaded in sodium alginate/jeffamine (ALG/jeff) hydrogel for prolonged delivery of insulin. The main aim of this work was to fabricate an efficient insulin delivery system to improve patient adherence by decreasing the repetition of injections.
Methods: Swelling and morphological properties and crosslinking efficiency of ALG/jeff hydrogel were assessed.
Posterior eye diseases are a common cause of vision problems in developing countries, which have encouraged the development of new treatment models for these degenerative diseases. Intraocular implants are one of the drug delivery systems to the posterior region of the eye. Using these implants, the blood-eye barrier can be bypassed; the complications caused by repeated in vitro administrations can be eliminated, and smaller amounts of the drug would be used during the treatment process.
View Article and Find Full Text PDFThe major role of biomolecules in treatment of different diseases has been proven by several studies. However, the main drawback in successful treatment by these molecules is designing of efficient delivery systems to fulfill all of the delivery purposes. In this regard, many polymeric vehicles have been introduced for protecting and delivery of biomolecules to the target site.
View Article and Find Full Text PDFDrug delivery to vitreous in comparison with drug delivery to the other parts of the eye is complicated and challenging due to the existence of various anatomical and physiological barriers. Developing injectable intra-vitreal implant could be beneficial in this regard. Herein, poly(hydroxybutyrate-co-valerate) (PHBV) implants were fabricated and optimized using response surface method for budesonide (BZ) delivery.
View Article and Find Full Text PDFHydroxyurea (HU) is a well-known chemotherapy drug with several side effects which limit its clinical application. This study was conducted to improve its therapeutic efficiency against breast cancer using liposomes as FDA-approved drug carriers. PEGylated nanoliposomes-containing HU (NL-HU) were made via a thin-film hydration method, and assessed in terms of zeta potential, size, morphology, release, stability, cellular uptake, and cytotoxicity.
View Article and Find Full Text PDFUncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH).
View Article and Find Full Text PDFChitosan as a biopolymer is an attractive vehicle for biomedical applications due to its unique characteristics. In order to improve chitosan's physicochemical features, chemical modification has been carried out to make it more suitable for such approaches. The aim of this study was to prepare and evaluate thiolated chitosan-lauric acid as a new chitosan derivative for biomedical use.
View Article and Find Full Text PDFThe present study aimed to investigate in vitro DNA transfection efficiency of three novel chitosan derivatives: thiolated trimethyl chitosan (TMC-Cys), methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan(MABCC) and thiolated trimethyl aminobenzyl chitosan(MABC-Cys). After polymer synthesis and characterization, nanoparticles were prepared using these polymers and their size, zeta potential and DNA condensing ability were measured. After that, cytotoxicity and transfection efficiency of nanocomplexes were carried out in three different cells.
View Article and Find Full Text PDFBackground: Despite years of experience and rigorous research, injectable insulin is the sole trusted treatment method to control the blood glucose level in diabetes type 1 patients, but injection of insulin is painful and poses a lot of stress to the patients, especially children, therefore, development of a non-injectable formulation of insulin is a major breakthrough in the history of medicine and pharmaceutical sciences.
Methods: In this study, a novel peptide grafted derivative of chitosan (CPP-g- chitosan) is synthesized and its potential for oral delivery of proteins and peptides is evaluated. Drug-loaded nanoparticles were developed from this derivative using ionic gelation method with application of sodium tripolyphosphate (TPP) as a cross-linking agent.
In this study, N,N-Dimethyl-N-Octyl chitosan was synthesized. Nanoparticles containing insulin were prepared using PEC method and were statistically optimized using the Box-Behnken response surface methodology. The independent factors were considered to be the insulin concentration, concentration and pH of the polymer solution, while the dependent factors were characterized as the size, zeta potential, PdI and entrapment efficiency.
View Article and Find Full Text PDFChoroidal neovascularization (CNV) is among the leading causes of blindness worldwide. Bevacizumab has demonstrated promising effects on CNV treatment; however, frequent intravitreal injection is its major drawback. Current study aimed to address this issue by developing a sustained release formulation through nanoparticles of bevacizumab imbedded in an ocular implant.
View Article and Find Full Text PDFThe purpose of this research was the fabrication, statistical optimization, and in vitro characterization of insulin-loaded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles (INS-PHBV-NPs). Nanopar-ticles were successfully developed by double emulsification solvent evaporation method. The NPs were characterized for particle size, entrapment efficiency (EE%), and polydispersity index (PDI).
View Article and Find Full Text PDFNanostructured colloidal delivery systems comprising of pectin-coated nanoliposomes (pectonanoliposomes) were developed as carriers for a bioactive polyphenolic compound (phloridzin). Phloridzin-loaded nanoliposomes were fabricated using a heating-stirring-sonication method, and coated with low methoxyl pectin using an electrostatic deposition approach. Dynamic light scattering, micro-electrophoresis, atomic force microscopy, and UV-Visible spectroscopy were used to investigate the impact of system composition on the size, charge, morphology and stability as well as immobilization, adsorption and encapsulation efficiencies of the pectonanoliposomes.
View Article and Find Full Text PDFPurpose: The aim of this research work was to explore the possibility of providing multifunctional oral insulin delivery system by conjugating several types of dipeptides on chitosan and trimethyl chitosan to be used as drug carriers.
Method: Conjugates of Glycyl-glycine and alanyl-alanine of chitosan and trimethyl chitosan (on primary alcohol group of polymer located on carbon 6) were synthesized and nanoparticles containing insulin were prepared for oral delivery. Preparation conditions of nanoparticles were optimized and their performance to enhance the permeability of insulin as well as cytotoxicity of nanoparticles in Caco-2 cell line was evaluated.
A comprehensive model with all effective phenomena in drug release such as diffusion, swelling and erosion was considered. In this work, a mathematical model was developed to describe drug release from controlled release HPMC matrices as a favorable system in pharmaceutical industries. As a novel study, the impact of the MCC presence as a filler in tablet preparation process was considered in the mathematical model.
View Article and Find Full Text PDFSustained release of functional growth factors can be considered as a beneficial methodology for wound healing. In this study, recombinant human granulocyte colony-stimulating factor (G-CSF)-loaded chitosan nanoparticles were incorporated in Poly(ε-caprolactone) (PCL) nanofibers, followed by surface coating with collagen type I. Physical and mechanical properties of the PCL nanofibers containing G-CSF loaded chitosan nanoparticles PCL/NP(G-CSF) and in vivo performance for wound healing were investigated.
View Article and Find Full Text PDFA simple and reproducible water-in-oil (W/O) nanoemulsion technique for making ultrasmall (<15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano-sized (50 nm) water pools of the W/O nanoemulsion serve as "nano-containers and nano-reactors". The entrapped polymer chains of CS inside these "nano-reactors" are covalently cross-linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs.
View Article and Find Full Text PDFEur J Pharm Sci
April 2017
Chitosan is a natural mucoadhesive, biodegradable, biocompatible and nontoxic polymer which has been used in pharmaceutical industry for a lot of purposes such as dissolution enhancing, absorption enhancing, sustained releasing and protein, gene or drug delivery. Two major disadvantages of chitosan are poor solubility in physiological pH and low efficiency for protein and gene delivery. In this study thiolated methylated N-(4-N,N-dimethylaminobenzyl) chitosan was prepared for the first time in order to improve the solubility and delivery properties of chitosan.
View Article and Find Full Text PDFThe purpose of this study was the preparation, optimisation and in vitro characterisation of PHBV and PLGA blend nanoparticles (NPs) for prolonged delivery of Teriparatide. Double emulsion solvent evaporation technique was employed for the fabrication of NPs. The nanoformulation was optimised using the Box-Behnken methodology.
View Article and Find Full Text PDFChitosan, as a biocompatible polymer, is very attractive for biomedical applications. Continues studies are performing for improving its physicochemical features in order to make it more suitable for such approaches. In this study, methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan (MABCC) was synthesized,as a new chitosan derivative, in three steps.
View Article and Find Full Text PDFMolecularly imprinted nano-particles (MINPs) selective for olanzapine were prepared using methacrylic acid (MA) as monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and 2,2-azobis (2-isobutyronitrile) (AIBN) as the initiator in 36 different ratios. The reaction runs with considerable fine powder formation were selected for further binding and selectivity studies. The MINP with the best selectivity (MINP-32) was chosen for further structural characterization by Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), adsorption-desorption isotherm for specific surface area, volume and average pore diameter determination.
View Article and Find Full Text PDFBackground: The aim of the present study was to evaluate a non-destructive fabrication method in for the development of sustained-release poly (L, D-lactic acid)-based biodegradable clindamycin phosphate implants for the treatment of ocular toxoplasmosis.
Materials And Methods: The rod-shaped intravitreal implants with an average length of 5 mm and a diameter of 0.4 mm were evaluated for their physicochemical parameters.