Publications by authors named "Morteza Khaleghi"

The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of (TNF-α), (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NO) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17).

View Article and Find Full Text PDF

The present study aims to investigate the changes in different parameters related to the storage time of red blood cell (RBC) units. Microscopic, flow cytometric, and electrophoretic assessments were employed every few days for 60 days to investigate the alterations in morphology, size, phosphatidylserine (PS) externalization, and membrane proteins over time. Morphological transformation from discocytes to spherocytes progressed as the storage time increased, which was accompanied by an increment of cellular size.

View Article and Find Full Text PDF

The molecular mechanisms of opium with regard to coronary artery disease (CAD) have not yet been determined. The aim of the present study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NO) in patients with CAD with and without opium addiction. This case-control study was conducted in three groups: (1) opium-addicted patients with CAD (CAD+OA, n=30); (2) patients with CAD with no opium addiction (CAD, n=30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n=17).

View Article and Find Full Text PDF

Background And Objectives: Frequent platelet transfusion may lead to the formation of alloantibodies and immune-mediated platelet destruction. Currently, identifying economic and effective screening methods is necessary for the management of platelet transfusion while different tests were recommended. The present study aims to challenge the performance of slot blotting (SB) and flow cytometry (FC) assays in detecting immune platelet refractoriness.

View Article and Find Full Text PDF

Hereditary spherocytosis (HS), a familial defect involving red blood cell (RBC) membrane proteins, is associated with reduced deformability, increased fragility, and progressive destruction of spherical cells. The present study focuses on three subjects of a family showing a history of repeated episodes of lethargy and pallor of unknown etiology. All patients displayed reticulocytosis and spherocytosis and one of them had anemia and splenomegaly.

View Article and Find Full Text PDF

Objective: The resistance to antimony-containing glucantime is a major obstacle to successful treatment, especially in endemic areas. Looking the molecular mechanisms involved in this drug resistance will help in choosing the best treatment. The aim of this study was to evaluate the expression of multidrug-resistance 1 (MDR1) and multidrug-resistance protein A (MRPA) genes in acute, chronic non-lupoid, and chronic lupoid forms of dry type cutaneous leishmaniasis (DTCL).

View Article and Find Full Text PDF

Microphone placement behind the pinna, which minimizes feedback but also reduces perception of the high-frequency pinna cues needed for sound localization, is one reason why hearing-aid users often complain of poor sound quality and difficulty understanding speech in noisy situations. In this paper, two strategies are investigated for minimizing the feedback pressure (thereby increasing the maximum stable gain, MSG) of a wide-bandwidth light-activated contact hearing aid (CHA) to facilitate microphone placement in the ear canal (EC): (1) changing the location of the drive force and its direction at the umbo, and (2) placing an acoustic damper within the EC to reduce the feedback pressure at the microphone location. The MSG and equivalent pressure output (EPO) are calculated in a 3D finite element model of a human middle ear based on micro computed tomography (micro-CT) images.

View Article and Find Full Text PDF

Computer-controlled digital holographic techniques are developed and used to measure shape and four-dimensional nano-scale displacements of the surface of the tympanic membrane (TM) in cadaveric human ears in response to tonal sounds. The combination of these measurements (shape and sound-induced motions) allows the calculation of the out-of-plane (perpendicular to the surface) and in-plane (tangential) motion components at over 1,000,000 points on the TM surface with a high-degree of accuracy and sensitivity. A general conclusion is that the in-plane motion components are 10-20 dB smaller than the out-of-plane motions.

View Article and Find Full Text PDF

Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously.

View Article and Find Full Text PDF

The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM.

View Article and Find Full Text PDF

Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS).

View Article and Find Full Text PDF

Unlabelled: Opto-electronic computer holographic measurements were made of the tympanic membrane (TM) in cadaveric chinchillas. Measurements with two laser wavelengths were used to compute the 3D-shape of the TM. Single laser wavelength measurements locked to eight distinct phases of a tonal stimulus were used to determine the magnitude and the relative phase of the surface displacements.

View Article and Find Full Text PDF