Publications by authors named "Morten S Wigen"

Background: Mechanical wave velocity (MWV) measurement is a promising method for evaluating myocardial stiffness, because these velocities are higher in patients with myocardial disease.

Objectives: Using high frame rate echocardiography and a novel method for detection of myocardial mechanical waves, this study aimed to estimate the MWVs for different left ventricular walls and events in healthy subjects and patients with aortic stenosis (AS). Feasibility and reproducibility were evaluated.

View Article and Find Full Text PDF

Objective: Using an experimental tool for retrospective ultrasound Doppler quantification-with high temporal resolution and large spatial coverage-simultaneous flow and tissue measurements were obtained. We compared and validated these experimental values against conventional measurements to determine if the experimental acquisition produced trustworthy tissue and flow velocities.

Methods: We included 21 healthy volunteers.

View Article and Find Full Text PDF

In this study we have compared two modalities for flow quantification from measurement data; ultrasound (US) and shadow particle image velocimetry (PIV), and a flow simulation model using computational fluid dynamics (CFD). For the comparison we have used an idealized Quasi-2D phantom of the human left ventricular outflow tract (LVOT). The PIV data will serve as a reference for the true flow field in our setup.

View Article and Find Full Text PDF

This study examines the feasibility of blood speckle tracking for vector flow imaging in healthy adults and describes the physiologic flow pattern and vortex formation in relation to the wall motion in the left ventricle. The study included 21 healthy volunteers and quantified and visualized flow patterns with high temporal resolution down to a depth of 10-12 cm without the use of contrast agents. Intraventricular flow seems to originate during the isovolumetric relaxation with a propagation of blood from base to apex.

View Article and Find Full Text PDF

Background: Flow properties play an important role in cardiac function, remodeling, and morphogenesis but cannot be displayed in detail with today's echocardiographic techniques. The authors hypothesized that blood speckle-tracking (BST) could visualize and quantify flow patterns. The aim of this study was to determine the feasibility, accuracy, and potential clinical applications of BST in pediatric cardiology.

View Article and Find Full Text PDF

The rate of energy transfer from the left ventricle to the aorta is viewed in terms of mean power (MP) and total power (TP). The difference between MP and TP is due to the pulsatility of the circulation and is known as oscillatory power (OP). OP is considered the energy spent to accelerate the blood flow.

View Article and Find Full Text PDF

In vivo characterization of intracardiac blood velocity vector fields may provide new clinical information but is currently not available for bedside evaluation. In this paper, 4-D vector flow imaging for intracardiac flow assessment is demonstrated using a clinical ultrasound (US) system and a matrix array transducer, without the use of contrast agent. Two acquisition schemes were developed, one for full volumetric coverage of the left ventricle (LA) at 50 vps and a 3-D thick-slice setup with continuous frame acquisition (4000 vps), both utilizing ECG-gating.

View Article and Find Full Text PDF

Two-dimensional blood speckle tracking (ST) has shown promise for measuring complex flow patterns in neonatal hearts using linear arrays and high-frame-rate plane wave imaging. For general pediatric applications, however, the need for phased array probes emerges due to the limited intercostal acoustic window available. In this paper, a clinically approved real-time duplex imaging setup with phased array probes was used to investigate the potential of blood ST for the 2-D vector flow imaging of children with congenital heart disease.

View Article and Find Full Text PDF