Prostate tumor heterogeneity is a major obstacle when studying the biological mechanisms of molecular markers. Increased gene expression levels of secreted frizzled-related protein 4 (SFRP4) is a biomarker in aggressive prostate cancer. To understand how SFRP4 relates to prostate cancer we performed comprehensive spatial and multiomics analysis of the same prostate cancer tissue samples.
View Article and Find Full Text PDFThe DNA damage inducible SOS response in bacteria serves to increase survival of the species at the cost of mutagenesis. The SOS response first initiates error-free repair followed by error-prone repair. Here, we have employed a multi-omics approach to elucidate the temporal coordination of the SOS response.
View Article and Find Full Text PDFDisease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden.
View Article and Find Full Text PDFMitochondrial activity in cancer cells has been central to cancer research since Otto Warburg first published his thesis on the topic in 1956. Although Warburg proposed that oxidative phosphorylation in the tricarboxylic acid (TCA) cycle was perturbed in cancer, later research has shown that oxidative phosphorylation is activated in most cancers, including prostate cancer (PCa). However, more detailed knowledge on mitochondrial metabolism and metabolic pathways in cancers is still lacking.
View Article and Find Full Text PDFBackground: Locally advanced breast cancer is a heterogeneous disease with respect to response to neoadjuvant chemotherapy (NACT) and survival. It is currently not possible to accurately predict who will benefit from the specific types of NACT. DNA methylation is an epigenetic mechanism known to play an important role in regulating gene expression and may serve as a biomarker for treatment response and survival.
View Article and Find Full Text PDFHigh secretion of the metabolites citrate and spermine is a unique hallmark for normal prostate epithelial cells, and is reduced in aggressive prostate cancer. However, the identity of the genes controlling this biological process is mostly unknown. In this study, we have created a gene signature of 150 genes connected to citrate and spermine secretion in the prostate.
View Article and Find Full Text PDFBackground: The dual upregulation of TOP2A and EZH2 gene expression has been proposed as a biomarker for recurrence in prostate cancer patients to be treated with radical prostatectomy. A low tissue level of the metabolite citrate has additionally been connected to aggressive disease and recurrence in this patient group. However, for radiotherapy prostate cancer patients, few prognostic biomarkers have been suggested.
View Article and Find Full Text PDFMultiple myeloma (MM) is an incurable hematologic malignancy resulting from the clonal expansion of plasma cells. MM cells are interacting with components of the bone marrow microenvironment such as cytokines to survive and proliferate. Phosphatase of regenerating liver (PRL)-3, a cytokine-induced oncogenic phosphatase, is highly expressed in myeloma patients and is a mediator of metabolic reprogramming of cancer cells.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
October 2021
Cytoscape is often used for visualization and analysis of metabolic pathways. For example, based on KEGG data, a reader for KEGG Markup Language (KGML) is used to load files into Cytoscape. However, although multiple genes can be responsible for the same reaction, the KGML-reader KEGGScape only presents the first listed gene in a network node for a given reaction.
View Article and Find Full Text PDFBackground: Prostate cancer tissues are inherently heterogeneous, which presents a challenge for metabolic profiling using traditional bulk analysis methods that produce an averaged profile. The aim of this study was therefore to spatially detect metabolites and lipids on prostate tissue sections by using mass spectrometry imaging (MSI), a method that facilitates molecular imaging of heterogeneous tissue sections, which can subsequently be related to the histology of the same section.
Methods: Here, we simultaneously obtained metabolic and lipidomic profiles in different prostate tissue types using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI.
Background: Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts.
View Article and Find Full Text PDFSequencing technologies have changed not only our approaches to classical genetics, but also the field of epigenetics. Specific methods allow scientists to identify novel genome-wide epigenetic patterns of DNA methylation down to single-nucleotide resolution. DNA methylation is the most researched epigenetic mark involved in various processes in the human cell, including gene regulation and development of diseases, such as cancer.
View Article and Find Full Text PDFThe potential of selection to improve resistance to streptococcosis was evaluated in a commercial population of Nile tilapia in Thailand. The base generation (G0) consisted of offspring from 98 sires and 149 dams using a partly nested design. At 60 days post-hatch, 30 fish from each family were injected intraperitoneally with a Streptococcosis agalactiae solution (1 × 10 CFU/ml) and evaluated for 14 days.
View Article and Find Full Text PDFWe present model-based analysis for ChIA-PET (MACPET), which analyzes paired-end read sequences provided by ChIA-PET for finding binding sites of a protein of interest. MACPET uses information from both tags of each PET and searches for binding sites in a two-dimensional space, while taking into account different noise levels in different genomic regions. MACPET shows favorable results compared with MACS in terms of motif occurrence and spatial resolution.
View Article and Find Full Text PDFThe Norwegian e-Infrastructure for Life Sciences (NeLS) has been developed by ELIXIR Norway to provide its users with a system enabling data storage, sharing, and analysis in a project-oriented fashion. The system is available through easy-to-use web interfaces, including the Galaxy workbench for data analysis and workflow execution. Users confident with a command-line interface and programming may also access it through Secure Shell (SSH) and application programming interfaces (APIs).
View Article and Find Full Text PDFReactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate cancer and has previously been associated with more aggressive tumors. The aim of this study was to detect differentially expressed genes and metabolites according to reactive stroma content measured on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy (Biobank1).
View Article and Find Full Text PDFBackground: The relationship between cholesterol and prostate cancer has been extensively studied for decades, where high levels of cellular cholesterol are generally associated with cancer progression and less favorable outcomes. However, the role of in vivo cellular cholesterol synthesis in this process is unclear, and data on the transcriptional activity of cholesterol synthesis pathway genes in tissue from prostate cancer patients are inconsistent.
Methods: A common problem with cancer tissue data from patient cohorts is the presence of heterogeneous tissue which confounds molecular analysis of the samples.