Publications by authors named "Morten Rybtke"

The extracellular matrix of microbial biofilms has traditionally been viewed as a structural scaffold that retains the resident bacteria in the biofilm. Moreover, a role of the matrix in the tolerance of biofilms to antimicrobials and environmental stressors was recognized early in biofilm research. However, as research progressed it became apparent that the biofilm matrix can also be involved in processes such as bacterial migration, genetic exchange, ion capture and signalling.

View Article and Find Full Text PDF

The crystal violet microtiter plate biofilm assay is often used to compare the amount of biofilm formed by a mutant versus wild-type or a compound-treated biofilm versus the non-treatment control. In many of these studies the amount of biofilm is assessed only at one single time point. However, if the dynamics of biofilm development of the mutant (or compound-treated biofilm) is different than that of the wild-type (or non-treatment control), then biofilm quantification at a single time point may give misleading results.

View Article and Find Full Text PDF

Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities.

View Article and Find Full Text PDF
Article Synopsis
  • * A new compound called H6-335-P1 has been developed to disrupt bacterial biofilms by targeting the c-di-GMP signaling pathway, leading to the dispersal of bacteria into a more vulnerable planktonic state.
  • * Formulated as Disperazol, this water-soluble compound shows significantly enhanced efficacy when combined with the antibiotic ciprofloxacin in treating catheter-associated UTIs, demonstrating potential for improved treatment options.
View Article and Find Full Text PDF

Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. F113 possesses eight gene clusters responsible for the production of ECM components.

View Article and Find Full Text PDF

The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen , a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in .

View Article and Find Full Text PDF

Background And Purpose: Bacterial biofilm infections are major health issues as the infections are highly tolerant to antibiotics and host immune defenses. Appropriate biofilm models are important to develop and improve to make progress in future biofilm research. Here, we investigated the ability of PF hydrogel material to facilitate the development and study of biofilms and .

View Article and Find Full Text PDF
Article Synopsis
  • Overproduction of alginate in Pseudomonas aeruginosa increases its ability to cause chronic infections and resist antibiotics, especially in cystic fibrosis patients.
  • Research indicates that the molecule c-di-GMP is crucial in regulating the production of alginate by influencing the transcription of its operon through various proteins.
  • Key proteins such as AmrZ, AlgR, and AlgB are essential for this transcription process, but c-di-GMP does not directly bind to them, suggesting a complex regulatory mechanism for alginate synthesis that could inform future treatment strategies.
View Article and Find Full Text PDF

Denitrification supports anoxic growth of in infections. Moreover, denitrification may provide oxygen (O) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in . To examine the prevalence of NO dismutation we studied O release by in airtight vials.

View Article and Find Full Text PDF

Microbial biofilms are involved in a number of infections that cannot be cured, as microbes in biofilms resist host immune defenses and antibiotic therapies. With no strict biofilm-antibiotic in the current pipelines, there is an unmet need for drug candidates that enable the current antibiotics to eradicate bacteria in biofilms. We used high-throughput screening to identify chemical compounds that reduce the intracellular c-di-GMP content in Pseudomonas aeruginosa.

View Article and Find Full Text PDF

is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue.

View Article and Find Full Text PDF

A decade of research has shown that the molecule c-di-GMP functions as a central second messenger in many bacteria. A high level of c-di-GMP is associated with biofilm formation, whereas a low level of c-di-GMP is associated with a planktonic single-cell bacterial lifestyle. c-di-GMP is formed by diguanylate cyclases and is degraded by specific phosphodiesterases.

View Article and Find Full Text PDF

Bacterial biofilms may cause chronic infections due to their ability to evade clearance by the immune system and antibiotics. The persistent biofilms induce a hyperinflammatory state that damages the surrounding host tissue. Knowledge about the components of biofilms that are responsible for provoking the harmful but inefficient immune response is limited.

View Article and Find Full Text PDF

Background: Antimicrobial photodynamic inactivation (APDI) is a new therapeutic modality which needs more precision during application due to the possibility of exposure of bacteria to sub-lethal doses (sAPDI). In this study, we aimed to evaluate the effect of sAPDI on Pseudomonas aeruginosa quorum sensing (QS) and c-di-GMP signaling which are important virulence factor regulatory systems.

Methods: Biofilm formation, pyoverdine, pyocyanin and protease production of P.

View Article and Find Full Text PDF

is an environmental bacterium and a nosocomial pathogen with clone C one of the most prevalent clonal groups. The clone C specific genomic island PACGI-1 harbors a xenolog of encoding a functionally diverse membrane-spanning ATP-dependent metalloprotease on the core genome. In the aquatic isolate SG17M, the core genome copy significantly affects growth and dominantly mediates a broad range of phenotypes, such as secretion of secondary metabolites, swimming and twitching motility and resistance to aminoglycosides, while the PACGI-1 xenolog backs up the phenotypes in the mutant background.

View Article and Find Full Text PDF

Detection of the biofilm of bacteria would be a counter strategy to detect hidden bacteria in their camouflage. Through unbiased screening of bacteria biofilm, we discovered a long wavelength probe CDr15 with extracellular DNA as the molecular target. CDr15 revealed a real-time geometric distribution of eDNA in a 3D bacterial colony.

View Article and Find Full Text PDF

Phage therapy has shown promising results in the treatment of Pseudomonas aeruginosa biofilm infections in animal studies and case reports. The aim of this study was to quantify effects of phage treatments on P. aeruginosa biofilm production and structure.

View Article and Find Full Text PDF

The human pathogen Pseudomonas aeruginosa can cause both acute infections and chronic biofilm-based infections. Expression of acute virulence factors is positively regulated by cAMP, whereas biofilm formation is positively regulated by c-di-GMP. We provide evidence that increased levels of cAMP, caused by either a lack of degradation or increased production, inhibit P.

View Article and Find Full Text PDF

Detection of biofilm bacteria would be an ideal method for the physicians to diagnose chronic bacterial infections directly, but there are few imaging probes available so far. Here, we report the development of a novel biofilm detecting fluorescent probe, CDy14, through an unbiased screening of a fluorescence library and elucidated its binding partner Psl, an exopolysaccharide of the biofilm.

View Article and Find Full Text PDF

Anti-microbial peptides are produced at outer and inner surfaces by epithelia and innate immune cells in response to bacterial infection. is an enterotoxin producing, Gram-positive pathogen, which is a major cause of soft tissue infections and life-threatening bacteremia and sepsis. Here we show that (i) skin T cells in chronic wounds infected with express interleukin-26 (IL-26) , (ii) staphylococcal enterotoxins (SE) trigger IL-26 expression in T cell lines and primary skin T cells, and (iii) IL-26 triggers death and inhibits biofilm formation and growth of .

View Article and Find Full Text PDF

For the past 150 years, bacteria have been investigated primarily in liquid batch cultures. Contrary to most expectations, these cultures are not homogeneous mixtures of single-cell bacteria, because free-floating bacterial aggregates eventually develop in most liquid batch cultures. These aggregates share characteristics with biofilms, such as increased antibiotic tolerance.

View Article and Find Full Text PDF

Recent research has shown that the molecule c-di-GMP is an important second messenger regulating various functions in bacteria. In particular, the implication of c-di-GMP as a positive regulator of adhesion and biofilm formation has gained momentum as a highly relevant research topic, as detailed knowledge about the underlying regulatory mechanisms may enable the development of measures to control biofilms in both industrial and medical settings. Accordingly, it is in many cases of interest to measure the c-di-GMP level in bacteria under specific conditions or in specific mutant strains.

View Article and Find Full Text PDF

For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show that the repressing effect of ajoene on quorum sensing occurs by inhibition of small regulatory RNAs (sRNA) in P.

View Article and Find Full Text PDF

Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm-stabilizing exopolysaccharide.

View Article and Find Full Text PDF

Current antibiotic treatments are insufficient in eradicating bacterial biofilms, which represent the primary cause of chronic bacterial infections. Thus, there is an urgent need for new strategies to eradicate biofilm infections. The second messenger c-di-GMP is a positive regulator of biofilm formation in many clinically relevant bacteria.

View Article and Find Full Text PDF