A hallmark of unconventional superconductors is a complex electronic phase diagram where intertwined orders of charge-spin-lattice degrees of freedom compete and coexist. While the kagome metals such as CsVSb also exhibit complex behavior, involving coexisting charge density wave order and superconductivity, much is unclear about the microscopic origin of the superconducting pairing. We study the vortex lattice in the superconducting state of Cs(VTa)Sb, where the Ta-doping suppresses charge order and enhances superconductivity.
View Article and Find Full Text PDFMany superconducting materials allow the penetration of magnetic fields in a mixed state in which the superfluid is threaded by a regular lattice of Abrikosov vortices, each carrying one quantum of magnetic flux. The phenomenological Ginzburg-Landau theory, based on the concept of characteristic length scales, has generally provided a good description of the Abrikosov vortex lattice state. We conducted neutron-scattering measurements of the vortex lattice form factor in the heavy-fermion superconductor cerium-cobalt-indium (CeCoIn5) and found that this form factor increases with increasing field-opposite to the expectations within the Abrikosov-Ginzburg-Landau paradigm.
View Article and Find Full Text PDFUsing small-angle neutron scattering, we have imaged the magnetic flux line lattice (FLL) in the d-wave heavy-fermion superconductor CeCoIn5. At low fields we find a hexagonal FLL. Around 0.
View Article and Find Full Text PDF