Publications by authors named "Morten M Smedskjaer"

Article Synopsis
  • Glasses are formed by rapidly cooling liquids to prevent crystalline structures and are traditionally categorized into inorganic, organic, and metallic types.
  • They play a crucial role in various applications such as safe containers and enhancing living spaces, but designing glasses with precise structures remains a challenge.
  • Recent advancements have led to the identification of a fourth category, metal-organic or hybrid glasses, which are created through melt-quenching new materials, and this review explores their potential in chemistry, physics, and engineering.
View Article and Find Full Text PDF
Article Synopsis
  • Lithium metal batteries face issues with dendrite growth and volume changes in the anode, which limit their performance.
  • The authors propose a solution using a metal-organic framework (MOF) glass layer that enhances lithium transport and provides a stable structure for plating and stripping.
  • Laboratory tests show that batteries with this MOF glass layer achieve long operational times (over 300 hours), high capacities, and excellent cycling stability, demonstrating its potential for creating superior lithium metal anodes.
View Article and Find Full Text PDF

Zeolitic imidazolate frameworks (ZIFs) feature complex phase transitions, including polymorphism, melting, vitrification, and polyamorphism. Experimentally probing their structural evolution during transitions involving amorphous phases is a significant challenge, especially at the medium-range length scale. To overcome this challenge, here we first train a deep learning-based force field to identify the structural characteristics of both crystalline and non-crystalline ZIF phases.

View Article and Find Full Text PDF
Article Synopsis
  • Water is a highly reactive and abundant substance that significantly affects the properties of metal-organic frameworks (MOFs), which are a rapidly developing class of materials.
  • Research shows that high-pressure water vapor can drastically change the structure and characteristics of MOF glasses, particularly a variant known as ZIF-62.
  • Key findings highlight that under specific heat treatments and water vapor pressures, the melting and glass transition temperatures of the MOF can drop by over 100 °C, while its hardness and Young's modulus can increase by up to 100%.
View Article and Find Full Text PDF

The glassy state of zeolitic imidazolate frameworks (ZIFs) has shown great potential for energy-related applications, including solid electrolytes. However, their thermal conductivity (κ), an essential parameter influencing thermal dissipation, remains largely unexplored. In this work, using a combination of experiments, atomistic simulations, and lattice dynamics calculations, we investigate κ and the underlying heat conduction mechanism in ZIF glasses with varying ratios of imidazolate (Im) to benzimidazolate (bIm) linkers.

View Article and Find Full Text PDF

Architected materials design across orders of magnitude length scale intrigues exceptional mechanical responses nonexistent in their natural bulk state. However, the so-termed mechanical metamaterials, when scaling bottom down to the atomistic or microparticle level, remain largely unexplored and conventionally fall out of their coarse-resolution, ordered-pattern design space. Here, combining high-throughput molecular dynamics (MD) simulations and machine learning (ML) strategies, some intriguing atomistic families of disordered mechanical metamaterials are discovered, as fabricated by melt quenching and exemplified herein by lightweight-yet-stiff cellular materials featuring a theoretical limit of linear stiffness-density scaling, whose structural disorder-rather than order-is key to reduce the scaling exponent and is simply controlled by the bonding interactions and their directionality that enable flexible tunability experimentally.

View Article and Find Full Text PDF

Polymers are promising candidates as solid-state electrolytes due to their performance and processability, but fillers play a critical role in adjusting the polymer network structure and electrochemical, thermal, and mechanical properties. Most fillers studied so far are anisotropic, limiting the possibility of homogeneous ion transport. Here, applying metal-organic framework (MOF) glass as an isotropic functional filler, solid-state polyethylene oxide (PEO) electrolytes are prepared.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-ion and post-lithium-ion batteries are crucial for sustainable energy systems, and recent research is focusing on solid-state materials, particularly amorphous materials, as potential game-changers for electrolytes.
  • Amorphous materials offer benefits like increased ion storage, better diffusion channels, and improved reaction activity, making them significant alternatives to traditional crystalline materials.
  • The review covers recent advancements in amorphous materials for batteries, discusses their properties and performance influences, and outlines the challenges faced in commercializing these new battery technologies.
View Article and Find Full Text PDF

Metal-organic framework (MOF) glasses have multiple potential applications, as they combine advantages of traditional glasses with those of MOFs. The melt-quenching process used to form MOF glasses typically leads to a significant decrease in porosity, but the structural origin of this thermally induced pore collapse remains largely unknown. Here, we study the melting process of three zeolitic imidazolate frameworks (ZIFs), namely ZIF-4, ZIF-62, and ZIF-76, using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Many-body dynamics of atoms such as glass dynamics is generally governed by complex (and sometimes unknown) physics laws. This challenges the construction of atom dynamics simulations that both (i) capture the physics laws and (ii) run with little computation cost. Here, based on graph neural network (GNN), we introduce an observation-based graph network (OGN) framework to "" to simulate complex glass dynamics solely from their static structure.

View Article and Find Full Text PDF

Chemical diversification of hybrid organic-inorganic glasses remains limited, especially compared to traditional oxide glasses, for which property tuning is possible through addition of weakly bonded modifier cations. In this work, it is shown that water can depolymerize polyhedra with labile metal-ligand bonds in a cobalt-based coordination network, yielding a series of nonstoichiometric glasses. Calorimetric, spectroscopic, and simulation studies demonstrate that the added water molecules promote the breakage of network bonds and coordination number changes, leading to lower melting and glass transition temperatures.

View Article and Find Full Text PDF

Superior flexibility and toughness can be achieved in bioactive hydrogels by the use of a double polymer network with complementary properties. Inspired by this design principle, we here combine polyacrylic acid (PAA) and sodium alginate (SA) to obtain a dual-reinforced double interpenetrating network (d-DIPN) hydrogel. The dual reinforcement involves ionic cross-linking and introduction of SiO nanoparticles, which leads to extraordinary improvements in strength and toughness.

View Article and Find Full Text PDF

Calcium aluminosilicate glasses have technological importance for a variety of industrial applications. However, the short-range structure of this glass system remains widely debated regarding the formation of oxygen triclusters. It is argued that triclusters are observed in high percentages within molecular dynamics simulations because of the high melting temperatures and correspondingly high fictive temperatures.

View Article and Find Full Text PDF

Prussian blue analogues (PBAs) are archetypes of microporous coordination polymers/metal-organic frameworks whose versatile composition allows for diverse functionalities. However, developments in PBAs have centred solely on their crystalline state, and the glassy state of PBAs has not been explored. Here we describe the preparation of the glassy state of PBAs via a mechanically induced crystal-to-glass transformation and explore their properties.

View Article and Find Full Text PDF

Simultaneously improving the strength and toughness of materials is a major challenge. Inorganic-polymer hybrids offer the potential to combine mechanical properties of a stiff inorganic glass with a flexible organic polymer. However, the toughening mechanism at the atomic scale remains largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The structure of materials, especially disordered ones like glass, influences their properties significantly due to variations in composition and behavior; understanding these fluctuations is key to improving material performance.
  • Glass has a unique atomic arrangement that causes variations in physical properties, necessitating advanced methods to quantify these statistical differences to better inform material development.
  • The article reviews various techniques to study how short- to long-range fluctuations affect glass properties and processes, aiming to enhance our understanding and applications of glass in technology, such as in electronics, pharmaceuticals, and fiber optics.
View Article and Find Full Text PDF

We report the effect of structural compaction on the statistics of elastic disorder in a silicate glass, using heterogeneous elasticity theory with the coherent potential approximation (HET-CPA) and a log-normal distribution of the spatial fluctuations of the shear modulus. The object of our study, a soda lime magnesia silicate glass, is compacted by hot-compression up to 2 GPa (corresponding to a permanent densification of ~ 5%). Using THz vibrational spectroscopic data and bulk mechanical properties as inputs, HET-CPA evaluates the degree of disorder in terms of the length-scale of elastic fluctuations and the non-affine part of the shear modulus.

View Article and Find Full Text PDF

Glasses are materials that lack a crystalline microstructure and long-range atomic order. Instead, they feature heterogeneity and disorder on superstructural scales, which have profound consequences for their elastic response, material strength, fracture toughness, and the characteristics of dynamic fracture. These structure-property relations present a rich field of study in fundamental glass physics and are also becoming increasingly important in the design of modern materials with improved mechanical performance.

View Article and Find Full Text PDF

Thin films of amorphous alumina (a-AlO) have recently been found to deform permanently up to 100% elongation without fracture at room temperature. If the underlying ductile deformation mechanism can be understood at the nanoscale and exploited in bulk samples, it could help to facilitate the design of damage-tolerant glassy materials, the holy grail within glass science. Here, based on atomistic simulations and classification-based machine learning, we reveal that the propensity of a-AlO to exhibit nanoscale ductility is encoded in its static (nonstrained) structure.

View Article and Find Full Text PDF

Revealing the deformation mechanism of brittle materials under sharp contact loading (indentation) is important for their applications since this knowledge is crucial for identifying the origin of flaw and scratch formation on their surfaces. As a newly emerged glass family, metal-organic framework (MOF) glasses have not been studied concerning the mechanism of their indentation-induced deformation. Here, we explore this mechanism for ZIF-62 glass (a typical MOF glass system).

View Article and Find Full Text PDF

Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies.

View Article and Find Full Text PDF

Aluminoborosilicate glasses find a wide range of applications, which require good mechanical reliability such as surface damage resistance. Calcium aluminoborosilicate (CABS) glasses have recently been found to exhibit so-called intermediate behavior in terms of their response to sharp contact loading. That is, these glasses deform with less shear than normal glass and less densification than anomalous glasses.

View Article and Find Full Text PDF

In some biomaterial applications, the device needs to resist cyclic loading. Recently, self-healing hybrid systems with interpenetrating network of organic and inorganic components have been discovered. In this work, we clarify the structure-mechanical property relations in a new series of silica-poly(tetrahydropyran)-poly(ε-caprolactone) (SiO2-PTHP-PCL) materials, which were prepared through a three-step synthesis, including one-pot cationic ring-opening polymerization, sol-gel reaction, and polymer-silica cross condensation.

View Article and Find Full Text PDF

Understanding of the fracture mechanism of metal-organic framework glasses remains limited. Using reactive molecular dynamics simulations, we here find that three zeolitic imidazolate framework glasses exhibit pronounced nanoductility upon fracture. This fracture behavior is confirmed by fracture toughness predictions.

View Article and Find Full Text PDF