Maxwell's demon is the quintessential example of information control, which is necessary for designing quantum devices. In thermodynamics, the demon is an intelligent being who utilizes the entropic nature of information to sort excitations between reservoirs, thus lowering the total entropy. So far, implementations of Maxwell's demon have largely been limited to Markovian baths.
View Article and Find Full Text PDFSuperconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reach practical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits.
View Article and Find Full Text PDFA chiral photonic interface is a quantum system that has different probabilities for emitting photons to the left and right. An on-chip compatible chiral interface is attractive for both fundamental studies of light-matter interactions and applications to quantum information processing. We propose such a chiral interface based on superconducting circuits, which has wide bandwidth, rich tunability, and high tolerance to fabrication variations.
View Article and Find Full Text PDFObjective: People with schizophrenia and bipolar disorder are at increased risk of having comorbid somatic illness. This is partly due to lack of physical activity, which may originate from childhood. Sleep disturbances are associated with schizophrenia and bipolar disorder.
View Article and Find Full Text PDFSystem noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances.
View Article and Find Full Text PDFModels of light-matter interactions in quantum electrodynamics typically invoke the dipole approximation, in which atoms are treated as point-like objects when compared to the wavelength of the electromagnetic modes with which they interact. However, when the ratio between the size of the atom and the mode wavelength is increased, the dipole approximation no longer holds and the atom is referred to as a 'giant atom'. So far, experimental studies with solid-state devices in the giant-atom regime have been limited to superconducting qubits that couple to short-wavelength surface acoustic waves, probing the properties of the atom at only a single frequency.
View Article and Find Full Text PDFOne-dimensional (1D) electronic transport and induced superconductivity in semiconductor nanostructures are crucial ingredients to realize topological superconductivity. Our approach for topological superconductivity employs a two-dimensional electron gas (2DEG) formed by an InAs quantum well, cleanly interfaced with an epitaxial superconductor (epi-Al). This epi-Al/InAs quantum well heterostructure is advantageous for fabricating large-scale nanostructures consisting of multiple Majorana zero modes.
View Article and Find Full Text PDFQuantum coherence and control is foundational to the science and engineering of quantum systems. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified.
View Article and Find Full Text PDFThe coherent tunnelling of Cooper pairs across Josephson junctions (JJs) generates a nonlinear inductance that is used extensively in quantum information processors based on superconducting circuits, from setting qubit transition frequencies and interqubit coupling strengths to the gain of parametric amplifiers for quantum-limited readout. The inductance is either set by tailoring the metal oxide dimensions of single JJs, or magnetically tuned by parallelizing multiple JJs in superconducting quantum interference devices with local current-biased flux lines. JJs based on superconductor-semiconductor hybrids represent a tantalizing all-electric alternative.
View Article and Find Full Text PDFIn the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the ac Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and cross talk. Using a capacitively shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry.
View Article and Find Full Text PDFPhysical inactivity is important to address, and an objective way of measuring inactivity is by accelerometry. The objective of this study was to determine the reliability and construct validity of the SENS motion system to record physical activity and inactivity in patients with knee osteoarthritis. Participants with an age > 40 years and an average weekly pain above 0 on a numeric rating scale (0 = no pain, 10 = worst pain) were included.
View Article and Find Full Text PDFTransport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states.
View Article and Find Full Text PDFA Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically predicted topological system with a temperature-insensitive linear resistivity per unit length in the range of 2 kΩ/μm. A resistor network model of the device is developed to decouple the edge conductance from the bulk conductance, providing a quantitative technique to further investigate the nature of this trivial edge conductance, conclusively identified here as being of n type.
View Article and Find Full Text PDF