Publications by authors named "Morten Jonas Maltesen"

Purpose: The purpose of this study was to modulate the release profiles of the model protein drug from spray dried poly(DL-lactic-co-glycolic acid) (PLGA) microparticles by incorporating hyaluronic acid (HA) in the formulation.

Methods: Bovine serum albumin (BSA)-loaded PLGA microparticles with or without HA were prepared using a spray dryer equipped with a 3-fluid nozzle. The effects of HA on the surface tension and the rheological behavior of the inner feed solution were investigated.

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate the potential of using a spray-dryer equipped with a 3-fluid nozzle to microencapsulate protein drugs into polymeric microparticles.

Methods: Lysozyme and PLGA were used as a model protein and a model polymer, respectively. The effects of process and formulation variables, such as i) the type of organic solvent, ii) the feeding rate ratio of the outer PLGA-containing feed solution to inner lysozyme-containing feed solution, and iii) the mass ratio of PLGA to protein, on the properties (morphology, internal structure, protein surface enrichment and release profiles) of the spray dried microparticles were investigated to understand protein microencapsulation and particle formation mechanisms.

View Article and Find Full Text PDF

Purpose: It is imperative to understand the particle formation mechanisms when designing advanced nano/microparticulate drug delivery systems. We investigated how the solvent power and volatility influence the texture and surface chemistry of celecoxib-loaded poly (lactic-co-glycolic acid) (PLGA) microparticles prepared by spray-drying.

Methods: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying.

View Article and Find Full Text PDF

Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle.

View Article and Find Full Text PDF

Dehydration is a commonly used method to stabilise protein formulations. Upon dehydration, there is a significant risk the composition of the formulation will change especially if the protein formulation contains volatile compounds. Phenol is often used as excipient in insulin formulations, stabilising the insulin hexamer by changing the secondary structure.

View Article and Find Full Text PDF

Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion.

View Article and Find Full Text PDF

Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters.

View Article and Find Full Text PDF

The insulin hexamer acts as an allosteric unit mediated by homotropic and heterotropic effects shifting the equilibrium between three distinct conformational states (T(6), R(3)T(3) and R(6)). The homotropic ligand phenol stabilises the R(6) state by binding to hydrophobic pockets only present in the R(6) state and shifts the equilibrium towards the R(6) state. The structural difference between the T(6) and R(6) state is primarily a change in the B1-B8 residues from extended conformation (T(6)) to alpha-helix (R(6)).

View Article and Find Full Text PDF

Removal of water is a common method to prolong the storage stability of protein formulations. Traditionally, freeze-drying has been the method of choice, but spray drying and supercritical drying have gained increased interest in the past decade. The proper choice of drying technology has a significant impact on the final pharmaceutical product and on the overall economy of the process.

View Article and Find Full Text PDF

Quality by design (QBD) refers to a holistic approach towards drug development. Important parts of QBD include definition of final product performance and understanding of formulation and process parameters. Inhalation of proteins for systemic distribution requires specific product characteristics and a manufacturing process which produces the desired product.

View Article and Find Full Text PDF