Publications by authors named "Morten J Lee"

The low success rate of cancer nanomedicines has raised debate on the role of the enhanced permeability and retention (EPR) effect on tumor deposition of nanotherapeutics. Here, we report a bifunctional nanoscale coordination polymer (NCP), oxaliplatin (OX)/2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), to overcome the EPR limitation through stimulator of interferon genes (STING) activation and enhance chemotherapeutic and STING agonist delivery for tumor eradication. OX/GA encapsulates GA and OX in the NCP to protect GA from enzymatic degradation and improve GA and OX pharmacokinetics.

View Article and Find Full Text PDF

While activating antitumor immunity with toll-like receptor (TLR) agonists provides a promising approach toward cancer immunotherapy, existing TLR agonists, including resiquimod (R848), have shown poor tumor selectivity and ineffective TLR activation in tumors for optimal antitumor effects. We hypothesized that improved delivery of TLR agonists to tumors and their effective combination with tumor antigens could significantly enhance their antitumor efficacy. Here, we report a novel nanoscale coordination polymer, Ce6/R848, for the co-delivery of Ce6 photosensitizer to elicit immunogenic cell death via photodynamic therapy (PDT) and cholesterol-conjugated R848 (Chol-R848) for tumor-selective TLR7/8 activation.

View Article and Find Full Text PDF

The combination chemotherapy regimen FOLFIRINOX comprising folinic acid, 5-fluorouracil, irinotecan, and oxaliplatin is the first-line treatment for patients with advanced pancreatic cancer, but its use remains prohibitive for the majority of patients due to severe side effects. Here, we report a core-shell nanoscale coordination polymer (NCP) nanoparticle co-delivering a potent and synergistic combination of oxaliplatin, gemcitabine, and SN38 (OGS), for the treatment of pancreatic cancer in mouse models. OGS contains key synergistic components of FOLFIRINOX in a controllable drug ratio.

View Article and Find Full Text PDF

Conventional chemotherapy targets proliferative cancer cells to halt tumor progression or regress tumors. However, the plasticity of tumor cells enables their phenotypical changes to acquire chemo-resistance, leading to treatment failure or tumor recurrence after a successful treatment course. Here, we report the use of high-dose pharmacologic ascorbate to potentiate treatment efficacy of nanoscale coordination polymers (NCPs) delivering two clinical combinations of chemotherapeutics, carboplatin/docetaxel and oxaliplatin/SN38, and to target metabolic plasticity of tumor cells.

View Article and Find Full Text PDF

The addition of immune checkpoint blockade to standard chemotherapy has changed the standards of care for some cancer patients. However, current chemo-immunotherapy strategies do not benefit most colorectal cancer patients and many triple-negative breast cancer patients. Here, the design of a three-in-one nanoscale coordination polymer (NCP), OX/GC/CQ, comprising prodrugs of oxaliplatin (OX), gemcitabine (GC), and 5-carboxy-8-hydroxyquinoline (CQ) for triple-modality chemo-immunotherapy is reported.

View Article and Find Full Text PDF

Immunotherapies including immune checkpoint blockade (ICB) have become integral to treatments for immunogenic tumors by reinvigorating host immune functions to attack tumor cells. However, the clinical applications of ICB are limited by relatively low response rates as well as inherent and acquired resistance in many types of cancer. A potential solution is to selectively deliver immune modulators to tumors to activate the tumor microenvironment (TME) and enhance the therapeutic effect of ICB.

View Article and Find Full Text PDF

The binding of plasma proteins to nanomedicines is widely considered detrimental to their delivery to tumors. Here, the design of OxPt/SN38 nanoparticle containing a hydrophilic oxaliplatin (OxPt) prodrug in a coordination polymer core and a hydrophobic cholesterol-conjugated SN38 prodrug on the lipid shell for active tumor targeting is reported. OxPt/SN38 hitchhikes on low-density lipoprotein (LDL) particles, concentrates in tumors via LDL receptor-mediated endocytosis, and selectively releases SN38 and OxPt in acidic, esterase-rich, and reducing tumor microenvironments, leading to 6.

View Article and Find Full Text PDF